13

級数一覧 𝟏

1017
1

主にぼくが計算した級数を列挙する。ぼくが自力で導出できなかったものにはその出処を示す。

定義・記法

   ζ(k1,,ks,,ka)=0<n1<<na(1)ksn1k1nakaζ(k1,,ka)=0<n1na1n1k1nakaζN(k1,,ka)=0<n1<<naN1n1k1nakaζN(k1,,ka)=0<n1naN1n1k1nakat(k1,,ks,,ka)=0n1<<na(1)ks(2n1+1)k1(2na+1)kaβ(s)=0n(1)n(2n+1)sη(s)=(121s)ζ(s)Lik1,,ka(z)=0<n1<<nazkan1k1nakaχν(z)=0nz2n+1(2n+1)νψ(1+z)=γ+0<nzn(n+z)ψ(z)=0n1(n+z)2(z)n=Γ(n+z)Γ(z)k,,kn={k}nHn=m=1n1mpFq[a1,,apb1,,bq;z]=0n(a1,,ap)n(b1,,bq)nznn!

あくまでぼくが知っている範囲なので、実は計算できるというのがあれば教えてほしい。
また、間違った結果を書いている危険性があると提言するのも吝かで無い感じも僅かながら存在するので、あれば教えてほしい。
新たな結果を得たら追加していく。

   0<nζn1({1}a1)ζn({1}b)n3=ζ(b+1,a+1)j=1a(j+bb)ζ(aj+1,j+b+1)    (訂正後)

   Li{1}a1,b+1(1x)=j=0b1(1)jζ({1}a1,bj+1)Li{1}j(x)+(1)b0n1nbaLi{1}n1(1x)Lianb+1,nbnb1+1,,n2n1+1(x)

   0<n(1na+1j=0axnnaj+1Li{1}j(1x))k=0b(1)kζn1({1}bk)Li{1}k(x)=Li{1}a1,b+2(1x)    (出処:コメント欄)

   0<n1<<na1n1na1na3na!(α)na=0m<n1(m+α)na+1j=1a0<mn1maj+1(n+α)j+1

   k=0m1ζn({1}k)ζn(mk)=mζn({1}m)

   m=1(1)m1mn+1+j=1n1j!m=1(1)m1ζm1({1}j1)mnj+1=j=0nlnj2j!Linj+1(12)

   0<m1<<man1<<nb22ma+2n1(2m1)2(2ma)2(2mama)(2n1n1)(2n1+1)2(2nb+1)2=1(2a1)!(2b)!0π2x2a1(π2x)2bsinxdx

   0<l<m<n22ll2(2ll)(2mm)22mm22nn2(2nn)=9316ζ(5)218ζ(2)ζ(3)

   0<n(1)n1(1+(2n)2ln(2n)2(2n)21)=12+8β(2)π14ζ(3)π2

   2F1[12,1212+α;12]=12Γ(α2)Γ(12+α)Γ(1+α2)Γ(α)

   0n((α)n(1α)n)2=12+π2Γ2(1α)Γ(122α)Γ2(12α)Γ(12α)

   β(2)=120mn(2mm)22m(2m+1)12n(2n+1)

   0<2m+1<n(1)n(2m+1)(2n+1)=π224

   02m<n(2mm)(4m2m)26m(2m+1)22nn2(2nn)=8β(2)πln2

   0m<n22m(2m+1)2(2mm)(2nn)22nn=4β(2)ln2+80m<n1(2m+1)(4n+1)280mn1(2m+1)(4n+3)2

   0<m<n2m+nm2n(2nn)=02m<n(2mm)(4m+22m+1)26m(2m+1)22nn2(2nn)π312πln22

   0n22n(2n+1)2+π80n(2nn)(4n+22n+1)26n(2n+1)=π24

   0m<n(1)n1(2m+1)n=π216

   0<n22nn2(2nn)(2x1+x2)2n=80m<n(1)n1x2n(2m+1)n

   0mn22n(2m+1)(2n+1)2(2nn)20<mn(1)n1m(2n+1)2=5π3482β(2)ln2

   0mn(2mm)224m2n(2m+1)(2n+1)2(2nn)=π316

   0n24n(2n+1)4(2nn)2=2t(4)8t(1,3)+2πt(1,2)

   0mn22m+2n(2m+1)2(2n+1)2(2mm)(2nn)=0m2n((1)mπ2m+12(2m+1)2)1(2n+1)2+02m<n22m+1(4(2n+1)2(1)nπ(2n+1)3)

   π38πln220<n(2nn)Hn22n(2n+1)2=4β(2)ln240<n(1)n1Hn(2n+1)2=0n22n+1(2n+1)3(2nn)=π02m<n(2mm)2(1)n124m(2m+1)n=80m<n(1)m(1)n(2m+1)(2n+1)2

   0<n(1)n122nn2(2nn)m=0n1(2mm)22m(π22l=1m22ll2(2ll))=0<n(1)n122nn2(2nn)(2Hn+1(1)nn)

   80<m<n(2mm)22mm22nn(2nn)=π0<n(2nn)224nn2+80<mn1m2(1)n12n+1

   0m<n1(2m+1)an2(22n(2nn)1)=0m<n((1)a12ln2+Hm(2m+1)a+2j=0a2(1)jt(aj)(2m+1)j+1)(2nn)22nn

   0<m<n1man2(22n(2nn)1)=0<mn((1)a1Hmma+j=0a2(1)jζ(aj)mj+1)(2nn)22nn

   0<m<n22mm2(2mm)1(2n1)2=2π02l<2m<n1(2l+1)2(2mm)224m(1)n1n=0m<n(π22m+18(2m+1)3)(1)n1n=π4160m<n1(2m+1)2n20m<n(π2412m+12ln2+Hm(2m+1)2)(2nn)22nn      

   0<m<n22mm2(2mm)1(2n1)2=8β(2)2π416    ( 出処 )

   m=0n(1)m(2m+1)a+1(nm)=22n(2n+1)(2nn)0k1kan1(2k1+1)(2ka+1)    (出処:コメント欄)

   0<n(m+nm)n(2m+2n2m)=22mk(1)kk

   0<n22nn2(2nn)(m+nm)(2m+2n2m)=mn1(n+12)2

   20<mn1m(2n+1)2=0<2mn22mm2(2mm)(1)nn=72ζ(3)12π2ln2     (最右辺:コメント欄)

   0<n(1n2n<m(1)m+n+1m)=ln2

   0<l<m<n1lmnk=0n1((1)kπ2k+12(2k+1)2)=π40n22n(2nn)(2(2n+1)42ln2(2n+1)3+ln22(2n+1)2)180<n24nn3(2nn)2((m=12n1(1)mm)2+2nm(1)mm2)716π2ζ(3)+314ζ(5)πβ(4)      

   0<n24nn3(2nn)2((2nm(1)mm)2+2nm(1)mm2)=20m<n(2nn)(2m+1)2n322n

   0n22n(2nn)(2(2n+1)42ln2(2n+1)3+ln22(2n+1)2)=π20n(2nn)224n(2n+1)((m=12n(1)mm)2+2n<m(1)m1m2)

   0m<n(2mm)22m(2m+1)22n(2n+1)2(2nn)=t(3)

   0<mn22m+2nm2(2n+1)2(2mm)(2nn)=7πζ(3)24β(4)

   0n1na(2x)2na1x2(2n1+1)2(2na1+1)2(2na+1)(2nana)=0n1na(2n1n1)2(2x)2na24n1(2n1+1)(2n2+1)2(2na+1)2(2nana)

   0m<n(1)m2m+1(2nn)22n(2n+1)=120n(1)n(2nn)22n(2n+1)2=π224+120mn1(2m+1)(2n+1)2n140<mn1mn2n

   0<n24nn4(2nn)2=0m<n(π(1)m2m+12(2m+1)2)8n20m<n8(2m+1)n30<mn16m(π(1)n(2n+1)22(2n+1)3)

   0n(1)n(2nn)22n(2n+1)2=220m<n(1)n12m+1(14n1+14n+1)

   0n(2nn)22n(2n+1)2((1)nπ212n+1)=π0<n(4n2n)22n+3n2(2nn)

   2π0n2nΓ2(n2+34)(2n+1)2n!=π38+π80<n22n(2nn)n2(4n2n)

   0<n22n(2nn)n2(4n2n)+π0n(2nn)(4n+22n+1)26n(2n+1)=π2

   0<n122nn2((4n2n)(2nn)(1)n(2nn))=ζ(2)

   0m<n(2nn)(2m+1)(2n+1)222n=πln222π348

   0mn22n(2m+1)(2n+1)2(2nn)π40<n(2nn)2Hn24n(2n+1)=4β(2)ln2

   π20<nHn24nn(2nn)2=16β(2)ln2π3316t(1,2)

   0n26n(2n+1)3(2nn)(4n+22n+1)π320<n22n(2nn)n2(4n2n)=π80n(2nn)224n(2n+1)2=π31620mn(2mm)22m(2m+1)12n(2n+1)2=140m<n(1)m2m+11n2+120<n(1)n1Hn(2n+1)2=20m<n(1)m(2m+1)(2n+1)2=β(3)+20m<n(1)n(2m+1)(2n+1)2=140<m2n+1(1)m1m22n(2n+1)2(2nn)

   0m<n(2mm)22m(2m+1)(1)n1n=0n1(2n+1)2(4n+22n+1)22n+2(2nn)=π2ln(1+2)+4β(2)40n(1)n(1+2)2n+1(2n+1)2

   π80n(2nn)(4n+22n+1)26n(2n+1)2=πβ(2)0n(1)n(2nn)22n(2n+1)320m<n(1)m(2m+1)2(2nn)22n(2n+1)

   π80<n(4n2n)22nn3(2nn)=π6ln32+π324ln232πζ(3)π280n(2nn)(4n+22n+1)26n(2n+1)2+40m<n1(2m+1)3(2nn)22n(2n+1)

   π20m<n(2mm)22m(2m+1)(4n2n)24nn=π22ln(1+2)0m<n(1)m(2mm)22m(2m+1)1(1)nn2

   0m<n(4m+22m+1)24m(2m+1)22nn2(2nn)=80m<n(1)m(2mm)22m(2m+1)1n2

   j=0a1(1)aj1π2j(2j+1)!0m<n(2mm)22m(2m+1)(1)n1n2a2j1=0<n1<<na1n12na12(2na1)2(4na22na1)22na(2na2na1)

   π0m<n1(2m+1)2(2nn)(4n2n)26nn0<mn1(1)mm3(2nn)22n(2n+1)=34π3ln22π2β(2)78πζ(3)

   Γ2(14)2π0<n22nn2(2nn)(14)n(34)n=π20m<n(1)m(2mm)224mn2ππΓ2(14)0n24n+3(2n+1)2(4n+22n+1)(34)n(54)n+Γ2(14)π0<n24n4n2(4n2n)(14)n(34)n

   264(ψ(18)+ψ(38)ψ(58)ψ(78))=β(2)+0n22n(2nn)(2n+1)2(4n+22n+1)=β(2)+2160m<n(2mm)(4m2m)26m22nn2(2nn)=4t(3)π+2160m<n(2mm)(4m2m)26m1n2=4t(3)π+116π0<n26nn3(2nn)(4n2n)

   0<n(1)n1n2r(α)n(1α)n+120<n1nr22n1(2n1n1)(12α)n1(1α)n11n12nr2=η(2r)

   0<n(α)nn2(1α)n=ζ(2)2πΓ(1α)Γ(12α)0n(12+α)n(2n+1)2(12)n+120<n22nn2(2nn)(12α)n(1α)n

   0m<n1(2m+1)n(14)n(34)n=π216+β(2)

   120<n(12)nn2(34)n=0<n2nn2(2nn)0<m<n2nmn(2nn)=πln22+π282β(2)

   120<n(12)nn3(34)n=0<n2nn3(2nn)0<m<n2nm2n(2nn)0<m<n2nmn2(2nn)+0<l<m<n2nlmn(2nn)=320<l<mn2(1)n(4l1)(4m1)(2n+1)

   120<n(12)nn4(34)n=0<n2nn4(2nn)0<m<n2nm3n(2nn)0<m<n2nm2n2(2nn)0<m<n2nmn3(2nn)+0<l<m<n2nl2mn(2nn)+0<l<m<n2nlm2n(2nn)+0<l<m<n2nlmn2(2nn)0<k<l<m<n2nklmn(2nn)

   120<n(12)nnr(34)n=j=1r(1)j10<n1<<njk1++kj=r,kiZ>02njn1k1njkj(2njnj)       (推測)

   0m<n(14)mm!22m(2m+1)(2mm)(2nn)22n(2n+1)=π(142πΓ2(14))

   0mn12m+1(1+(2mm)22m)22n+2(2n+1)2(2nn)0m<n12m+1(1+(2mm)22m)22nn2(2nn)=8β(2)ln2

   2β(2)2=0m<n(1(2m+1)21(1)nn2+12m+11(1)nn3π2212m+1(1)n1n)

   60<n24n(2n+1)3(2nn)2m=0n112m+1k=1n1k2=0m<n(π3(1)m(2m+1)224π(1)m(2m+1)4+48(2m+1)5)(1)n1n

   0<mn(1)n1m2(2n+1)+420n(2nn)23n(2n+1)3=π36+54πln222β(2)ln2+π80<n(2nn)224nn2

   0<m<n1mn2n(2mm)2m(2nn)=πln22

   π0<n12nn2n!Γ2(54+n2)=20<m+1<n(2mm)225m(m+1)1n2

   (2mm)22mm<k22kk(k+n)(2kk)+(2nn)22nn<k22kk(k+m)(2kk)=π2(2mm)(2nn)22m+2n

   22mm(2mm)k=0m1(2kk)22k(k+n)+22nn(2nn)k=0n1(2kk)22k(k+m)=22m+2nmn(2mm)(2nn)

   0<mn22mm2(2mm)(2nn)22nn2=π2ln220<mn22nmn3(2nn)

   4β(2)2π+0m<n24m(2m+1)2(2mm)2(2nn)224n(2n+1)=2β(2)ln2+120n22nHn(2n+1)2(2nn)=2β(3)+0<mn22mm2(2mm)(2nn)22n(2n+1)

   0<mn22mm2(2mm)(2nn)22n(2n+1)2+20n22n(Hn+2ln2)(2n+1)3(2nn)=8t(2)(β(2)2πln2)

   22n(2nn)m<k22kk2(2kk)k!n!(k+n)!=22m(2mm)n<k22kk2(2kk)k!m!(k+m)!

   0m<n22n(2m+1)n3(2nn)=π42432t(3,1)

   0m<n(2mm)22m(2m+1)22n(2n+1)3(2nn)=4t(1,3)

   0<2mn1(2m1)2(1)nn=180<m<n(2mm)22mm22nn2(2nn)=π2ln28716ζ(3)

   160m<n(2nn)(2m+1)2(2n+1)222n=2π0<2m<n(1)n1m2n=π0<m<n(2mm)22mmn2=π3ln233πζ(3)2

   0m<n(1)m+n1(2m+1)2n=2t(3)+2t(2,1)+2t(1,2)t(2)ln2

   0<2m+1<n24m(2m+1)2(2mm)2(1)n1n=2t(3)4t(2,1)4t(1,2)+2t(2)ln2

   πβ(2)ln2=2t(4)+2πt(1,2)4πt(1,2)+8t(1,3)+0m<n(π2(1)m2m+11(2m+1)2)1n20<mn4m(π2(1)n(2n+1)21(2n+1)3)

   0n(12+α)n(n+12)2(12)n=0<n22nn(nα)(2nn)

   0n22n(2n+1)2(2nn)=2β(2)

   0n22n(2n+1)3(2nn)=2β(2)ln220<mn(1)n1m(2n+1)2=4t(1,2)4t(1,2)=2t(3)+4t(2,1)

   0n22n(2n+1)4(2nn)=ln220n22n(2n+1)3(2nn)+78πζ(3)18π3ln220<lmn(1)nl(2m+1)2(2n+1)20<lm<n(1)nl(2m+1)(2n+1)2=4t(2)t(2)2t(4)8t(2,2)+8t(1,1,2)8t(1,1,2)=2t(4)+4t(2,2)+4t(3,1)+8t(2,1,1)

   0n22n(2n+1)a(2nn)=wt(k)=ak122jt(k1,,kj1,kj)     (訂正後。出処:コメント欄)

   0<n22nn2(2nn)=4t(2)

   0<n22nn3(2nn)=4t(3)6ζ(2)ζ(1)

   0<n22nn4(2nn)=ζ(2,2)+4ζ(2,2)+4ζ(1,3)4ζ(1,3)+12ζ(2)ζ(1,1)

   0<m<n22nmn2(2nn)=7ζ(3)

   0<m<n22nm2n2(2nn)=4t(4)

   0<m<n22nmn3(2nn)=14ζ(2,2)4ζ(2,2)4ζ(1,3)+4ζ(1,3)+4ζ(3,1)4ζ(3,1)

   n=1(2nn)224nn2(8β(2)+m=1n24mm2(2mm)2)=2πn=0(2nn)224n(ζ(2)2n+14(2n+1)2(m=0n12m+1ln2))

   n=0(2nn)224n(2n+1)2(8β(2)+m=1n24mm2(2mm)2)=2πt(3)+4t(2)(πln22β(2))π2n=1(2nn)224nn2m=0n112m+1

   n=1(2nn)22nnk=0n112k+1l=0n11(2l+1)2=2t(4)+t(2)n=1(2nn)2Hn24nn=π8n=11n2m=0n1(2mm)22m(2m+1)+π8n=1(2nn)22n(2n+1)m=1n22mm2(2mm)=πn=1(1)n1n2m=0n1(1)m2m+1=π8n=124nn3(2nn)2m=0n1(2mm)224m

   πx2n=0(2nn)224n(n+x)=n=012n+1(12+x)n(1+x)n

   3F2[12,12,α32,β;1]=Γ(β)Γ(12α+β)Γ(βα)Γ(12+α)3F2[1,1,α32,12+β;1]

   n=0(2nn)326n(3ζ(2)+m=1n22mm2(2mm))=1πn=126nn3(2nn)3m=0n1(2mm)224m=4n=022n(2n+1)2(2nn)m=0n(2mm)326m

   n=1(2nn)326nn(3ζ(2)+m=1n22mm2(2mm))=18ζ(2)ln24t(3)4πβ(2)1πn=126nn4(2nn)3m=0n1(2mm)224m

   8β(2)=n=122nn2(2nn)m=0n1(2mm)224m

   2ζ(2)β(2)+n=11n2m=0n124m(2m+1)2(2mm)2=n=022n+2(2n+1)2(2nn)m=0n(π2(2mm)22m(2m+1)1(2m+1)2)=2n=1(2nn)(2ln2+Hn)22n(2n+1)m=0n11(2m+1)2=4πt(3)8β(4)

   π211x2n=0(2nn)224nx2n=n=022nx2n(2n+1)(2nn)m=0n(2mm)224mx2m

   χ2(12)=56t(2)18n=1(4n2n)22nn2(2nn)=t(2)π16n=0(2nn)(4n+22n+1)26n(2n+1)

   n=122nn2(2nn)m=0n1(2mm)224m=2πln2+2n=0(2nn)Hn22n(2n+1)

   π2tanh1x1x2+21+xn=0(1x1+x)n(2n+1)2=n=0(2nn)22nx2n(2β(2)+14m=1n24mm2(2mm)2)

   2n=1(α)nn2(2α)n=ζ(2)+ψ(2α)(ψ(α)ψ(2α))2

   n=0(2nn)326nm=1n24mm2(2mm)2=(π28β(2))n=0(2nn)326n

   ζ(2)+n=1(2nn)2Hn24nn=1πn=124nn3(2nn)2m=0n1(2mm)224m

   ζ(3)+n=1(2nn)224nn(ζ(2)Hnn)=1πn=124nn4(2nn)2m=0n1(2mm)224m

   n=122nn3(2nn)m=0n1(2mm)224m=4πn=0(2nn)224n(2n+1)216β(2)ln2

   m=1(2mm)22m+1ml=0m124l(2l+1)3(2ll)2m=0n124m(2m+1)2(2mm)2(π22412m+1(ln2+k=0m12k+1))=24n(2nn)2m=124m(2m)3(2mm)2l=0m1(2ll)224l(2l+2n+1)

   n=1(2x1+x2)2n(2nn)22nnm=1n22mm2(2mm)=4χ3(x2)

   0m<n22nn2(2nn)(2mm)224m((1)m+12m+12)=π2Γ2(14)2

   0<mn22mm2(2mm)(1)n1(2nn)224n=0m<n(2mm)224mn2((1)m12m+12)

   20<mn24mm2(2mm)2(2nn)22n(1)m+n=0m<n(2mm)225m22nn2(2nn)

   0<m<n1m3n2(2nn)=589ζ(5)49ζ(2)ζ(3)2π0<n1n4sinπn3

   0<m<n22mm2(2mm)1n2=0<m<n(2mm)22mm222nn2(2nn)

   j=0r10<m<n(1)m1mj+1nrj((1)nm1n)=0<m<n(1)n1mn(1mr1nr)

   m=0n1(32m+17)26m(4m+1)(2mm)(4m2m)=(4n1)26n(2nn)(4n2n)+1 

     Γ(12)Γ(1+a)Γ2(b)Γ(a+b)Γ(12+b)(1+a)n(a+b)n0m(2mm)(b)m(12+b)m22m(a+b+m+n)=(12+a)n(12+a+b)n(0m(1b)mm!(12+a+m)(γ+ψ(1+a)+2ln2+k=0m11k+1+a)+21+2aΓ(1+a)Γ(b)Γ(1+a+b)m=0n1(12+a+b)m(1+a)m(32+a)m(1+a+b)m)
      (ただしa>12

   m=0(2mm)22m(12+a)m(1+a)m(a+m+n)=Γ(a)Γ(12)Γ(12+a)22nn(2nn)(a)n(12+a)nm=0n1(2mm)22m(12+a)m(1+a)m

 

   ZC(s)=n=0(2nn)22n(n+12)s,  ZC2(s)=n=0(2nn)224n(n+12)s,  T1(s)=n=122nns(2nn)m=0n1(2mm)224m

と定義するとき

   j=0nZC(j+1)T1(nj+2)=π2ZC2(n+1)

   

   

投稿日:202188
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中