主にぼくが計算した級数を列挙する。ぼくが自力で導出できなかったものにはその出処を示す。
ζ(k1,⋯,ks―,⋯,ka)=∑0<n1<⋯<na(−1)ksn1k1⋯nakaζ⋆(k1,⋯,ka)=∑0<n1≤⋯≤na1n1k1⋯nakaζN(k1,⋯,ka)=∑0<n1<⋯<na≤N1n1k1⋯nakaζN⋆(k1,⋯,ka)=∑0<n1≤⋯≤na≤N1n1k1⋯nakat(k1,⋯,ks―,⋯,ka)=∑0≤n1<⋯<na(−1)ks(2n1+1)k1⋯(2na+1)kaβ(s)=∑0≤n(−1)n(2n+1)sη(s)=(1−21−s)ζ(s)Lik1,⋯,ka(z)=∑0<n1<⋯<nazkan1k1⋯nakaχν(z)=∑0≤nz2n+1(2n+1)νψ(1+z)=−γ+∑0<nzn(n+z)ψ′(z)=∑0≤n1(n+z)2(z)n=Γ(n+z)Γ(z)k,⋯,k⏟n={k}nHn=∑m=1n1mpFq[a1,⋯,apb1,⋯,bq;z]=∑0≤n(a1,⋯,ap)n(b1,⋯,bq)nznn!
あくまでぼくが知っている範囲なので、実は計算できるというのがあれば教えてほしい。また、間違った結果を書いている危険性があると提言するのも吝かで無い感じも僅かながら存在するので、あれば教えてほしい。新たな結果を得たら追加していく。
∑0<nζn−1({1}a−1)ζn⋆({1}b)n3=ζ⋆(b+1,a+1)−∑j=1a(j+bb)ζ(a−j+1,j+b+1) (訂正後)
Li{1}a−1,b+1(1−x)=∑j=0b−1(−1)jζ({1}a−1,b−j+1)Li{1}j(x)+(−1)b∑0≤n1≤⋯≤nb≤aLi{1}n1(1−x)Lia−nb+1,nb−nb−1+1,⋯,n2−n1+1(x)
∑0<n(1na+1−∑j=0axnna−j+1Li{1}j(1−x))∑k=0b(−1)kζn−1({1}b−k)Li{1}k(x)=Li{1}a−1,b+2(1−x) (出処:コメント欄)
∑0<n1<⋯<na1n1⋯na−1na3na!(α)na=∑0≤m<n1(m+α)na+1−∑j=1a∑0<m≤n1ma−j+1(n+α)j+1
∑k=0m−1ζn⋆({1}k)ζn⋆(m−k)=mζn⋆({1}m)
∑m=1∞(−1)m−1mn+1+∑j=1n1j!∑m=1∞(−1)m−1ζm−1({1}j−1)mn−j+1=∑j=0nlnj2j!Lin−j+1(12)
∑0<m1<⋯<ma≤n1<⋯<nb22ma+2n1(2m1)2⋯(2ma)2(2mama)(2n1n1)(2n1+1)2⋯(2nb+1)2=1(2a−1)!(2b)!∫0π2x2a−1(π2−x)2bsinxdx
∑0<l<m<n22ll2(2ll)(2mm)22mm22nn2(2nn)=9316ζ(5)−218ζ(2)ζ(3)
∑0<n(−1)n−1(−1+(2n)2ln(2n)2(2n)2−1)=−12+8β(2)π−14ζ(3)π2
2F1[12,1212+α;12]=12Γ(α2)Γ(12+α)Γ(1+α2)Γ(α)
∑0≤n((α)n(1−α)n)2=12+π2Γ2(1−α)Γ(12−2α)Γ2(12−α)Γ(1−2α)
β(2)=12∑0≤m≤n(2mm)22m(2m+1)12n(2n+1)
∑0<2m+1<n(−1)n(2m+1)(2n+1)=π224
∑0≤2m<n(2mm)(4m2m)26m(2m+1)22nn2(2nn)=8β(2)−πln2
∑0≤m<n22m(2m+1)2(2mm)(2nn)22nn=4β(2)ln2+8∑0≤m<n1(2m+1)(4n+1)2−8∑0≤m≤n1(2m+1)(4n+3)2
∑0<m<n2m+nm2n(2nn)=∑0≤2m<n(2mm)(4m+22m+1)26m(2m+1)22nn2(2nn)−π312−πln22
∑0≤n22n(2n+1)2+π8∑0≤n(2nn)(4n+22n+1)26n(2n+1)=π24
∑0≤m<n(−1)n−1(2m+1)n=π216
∑0<n22nn2(2nn)(2x1+x2)2n=8∑0≤m<n(−1)n−1x2n(2m+1)n
∑0≤m≤n22n(2m+1)(2n+1)2(2nn)−2∑0<m≤n(−1)n−1m(2n+1)2=5π348−2β(2)ln2
∑0≤m≤n(2mm)224m−2n(2m+1)(2n+1)2(2nn)=π316
∑0≤n24n(2n+1)4(2nn)2=2t(4)−8t(1,3)+2πt(1,2―)
∑0≤m≤n22m+2n(2m+1)2(2n+1)2(2mm)(2nn)=∑0≤m≤2n((−1)mπ2m+1−2(2m+1)2)1(2n+1)2+∑0≤2m<n22m+1(4(2n+1)2−(−1)nπ(2n+1)3)
π38−πln22−∑0<n(2nn)Hn22n(2n+1)2=4β(2)ln2−4∑0<n(−1)n−1Hn(2n+1)2=∑0≤n22n+1(2n+1)3(2nn)=π∑0≤2m<n(2mm)2(−1)n−124m(2m+1)n=8∑0≤m<n(−1)m−(−1)n(2m+1)(2n+1)2
∑0<n(−1)n−122nn2(2nn)∑m=0n−1(2mm)22m(π22−∑l=1m22ll2(2ll))=∑0<n(−1)n−122nn2(2nn)(2Hn+1−(−1)nn)
8∑0<m<n(2mm)22mm22nn(2nn)=π∑0<n(2nn)224nn2+8∑0<m≤n1m2(−1)n−12n+1
∑0≤m<n1(2m+1)an2(22n(2nn)−1)=∑0≤m<n((−1)a−12ln2+Hm(2m+1)a+2∑j=0a−2(−1)jt(a−j)(2m+1)j+1)(2nn)22nn
∑0<m<n1man2(22n(2nn)−1)=∑0<m≤n((−1)a−1Hmma+∑j=0a−2(−1)jζ(a−j)mj+1)(2nn)22nn
∑0<m<n22mm2(2mm)1(2n−1)2=2π∑0≤2l<2m<n1(2l+1)2(2mm)224m(−1)n−1n=∑0≤m<n(π22m+1−8(2m+1)3)(−1)n−1n=π416−∑0≤m<n1(2m+1)2n2−∑0≤m<n(π2412m+1−2ln2+Hm(2m+1)2)(2nn)22nn
∑0<m<n22mm2(2mm)1(2n−1)2=8β(2)2−π416 ( 出処 )
∑m=0n(−1)m(2m+1)a+1(nm)=22n(2n+1)(2nn)∑0≤k1≤⋯≤ka≤n1(2k1+1)⋯(2ka+1) (出処:コメント欄)
∑0<n(m+nm)n(2m+2n2m)=2∑2m≤k(−1)kk
∑0<n22nn2(2nn)(m+nm)(2m+2n2m)=∑m≤n1(n+12)2
2∑0<m≤n1m(2n+1)2=∑0<2m≤n22mm2(2mm)(−1)nn=72ζ(3)−12π2ln2 (最右辺:コメント欄)
∑0<n(1n−2∑n<m(−1)m+n+1m)=ln2
∑0<l<m<n1lmn∑k=0n−1((−1)kπ2k+1−2(2k+1)2)=π4∑0≤n22n(2nn)(2(2n+1)4−2ln2(2n+1)3+ln22(2n+1)2)−18∑0<n24nn3(2nn)2((∑m=12n−1(−1)mm)2+∑2n≤m(−1)mm2)−716π2ζ(3)+314ζ(5)−πβ(4)
∑0<n24nn3(2nn)2((∑2n≤m(−1)mm)2+∑2n≤m(−1)mm2)=2∑0≤m<n(2nn)(2m+1)2n322n
∑0≤n22n(2nn)(2(2n+1)4−2ln2(2n+1)3+ln22(2n+1)2)=π2∑0≤n(2nn)224n(2n+1)((∑m=12n(−1)mm)2+∑2n<m(−1)m−1m2)
∑0≤m<n(2mm)22m(2m+1)22n(2n+1)2(2nn)=t(3)
∑0<m≤n22m+2nm2(2n+1)2(2mm)(2nn)=7πζ(3)−24β(4)
∑0≤n1≤⋯≤na(2x)2na1−x2(2n1+1)2⋯(2na−1+1)2(2na+1)(2nana)=∑0≤n1≤⋯≤na(2n1n1)2(2x)2na24n1(2n1+1)(2n2+1)2⋯(2na+1)2(2nana)
∑0≤m<n(−1)m2m+1(2nn)22n(2n+1)=12∑0≤n(−1)n(2nn)22n(2n+1)2=π224+12∑0≤m≤n1(2m+1)(2n+1)2n−14∑0<m≤n1mn2n
∑0<n24nn4(2nn)2=∑0≤m<n(π(−1)m2m+1−2(2m+1)2)8n2−∑0≤m<n8(2m+1)n3−∑0<m≤n16m(π(−1)n(2n+1)2−2(2n+1)3)
∑0≤n(−1)n(2nn)22n(2n+1)2=22∑0≤m<n(−1)n−12m+1(14n−1+14n+1)
∑0≤n(2nn)22n(2n+1)2((−1)nπ2−12n+1)=π∑0<n(4n2n)22n+3n2(2nn)
2π∑0≤n2nΓ2(n2+34)(2n+1)2n!=π38+π8∑0<n22n(2nn)n2(4n2n)
∑0<n22n(2nn)n2(4n2n)+π∑0≤n(2nn)(4n+22n+1)26n(2n+1)=π2
∑0<n122nn2((4n2n)(2nn)−(−1)n(2nn))=ζ(2)
∑0≤m<n(2nn)(2m+1)(2n+1)222n=πln222−π348
∑0≤m≤n22n(2m+1)(2n+1)2(2nn)−π4∑0<n(2nn)2Hn24n(2n+1)=4β(2)ln2
π2∑0<nHn24nn(2nn)2=16β(2)ln2−π33−16t(1,2―)
∑0≤n26n(2n+1)3(2nn)(4n+22n+1)−π32∑0<n22n(2nn)n2(4n2n)=π8∑0≤n(2nn)224n(2n+1)2=π316−2∑0≤m≤n(2mm)22m(2m+1)12n(2n+1)2=14∑0≤m<n(−1)m2m+11n2+12∑0<n(−1)n−1Hn(2n+1)2=2∑0≤m<n(−1)m(2m+1)(2n+1)2=β(3)+2∑0≤m<n(−1)n(2m+1)(2n+1)2=14∑0<m≤2n+1(−1)m−1m22n(2n+1)2(2nn)
∑0≤m<n(2mm)22m(2m+1)(−1)n−1n=∑0≤n1(2n+1)2(4n+22n+1)22n+2(2nn)=π2ln(−1+2)+4β(2)−4∑0≤n(−1)n(−1+2)2n+1(2n+1)2
π8∑0≤n(2nn)(4n+22n+1)26n(2n+1)2=πβ(2)−∑0≤n(−1)n(2nn)22n(2n+1)3−2∑0≤m<n(−1)m(2m+1)2(2nn)22n(2n+1)
π8∑0<n(4n2n)22nn3(2nn)=π6ln32+π324ln2−32πζ(3)−π28∑0≤n(2nn)(4n+22n+1)26n(2n+1)2+4∑0≤m<n1(2m+1)3(2nn)22n(2n+1)
π2∑0≤m<n(2mm)22m(2m+1)(4n2n)24nn=π22ln(1+2)−∑0≤m<n(−1)m(2mm)22m(2m+1)1−(−1)nn2
∑0≤m<n(4m+22m+1)24m(2m+1)22nn2(2nn)=8∑0≤m<n(−1)m(2mm)22m(2m+1)1n2
∑j=0a−1(−1)a−j−1π2j(2j+1)!∑0≤m<n(2mm)22m(2m+1)(−1)n−1n2a−2j−1=∑0<n1<⋯<na1n12⋯na−12(2na−1)2(4na−22na−1)22na(2na−2na−1)
π∑0≤m<n1(2m+1)2(2nn)(4n2n)26nn−∑0<m≤n1−(−1)mm3(2nn)22n(2n+1)=34π3ln2−2π2β(2)−78πζ(3)
Γ2(14)2π∑0<n22nn2(2nn)(14)n(34)n=π2∑0≤m<n(−1)m(2mm)224mn2−ππΓ2(14)∑0≤n24n+3(2n+1)2(4n+22n+1)(34)n(54)n+Γ2(14)π∑0<n24n−4n2(4n2n)(14)n(34)n
264(ψ′(18)+ψ′(38)−ψ′(58)−ψ′(78))=β(2)+∑0≤n22n(2nn)(2n+1)2(4n+22n+1)=β(2)+216∑0≤m<n(2mm)(4m2m)26m22nn2(2nn)=4t(3)π+216∑0≤m<n(2mm)(4m2m)26m1n2=4t(3)π+116π∑0<n26nn3(2nn)(4n2n)
∑0<n(−1)n−1n2r(α)n(1−α)n+12∑0<n1≤⋯≤nr22n1(2n1n1)(12−α)n1(1−α)n11n12⋯nr2=η(2r)
∑0<n(α)nn2(1−α)n=ζ(2)−2πΓ(1−α)Γ(12−α)∑0≤n(12+α)n(2n+1)2(12)n+12∑0<n22nn2(2nn)(12−α)n(1−α)n
∑0≤m<n1(2m+1)n(14)n(34)n=π216+β(2)
12∑0<n(12)nn2(34)n=∑0<n2nn2(2nn)−∑0<m<n2nmn(2nn)=πln22+π28−2β(2)
12∑0<n(12)nn3(34)n=∑0<n2nn3(2nn)−∑0<m<n2nm2n(2nn)−∑0<m<n2nmn2(2nn)+∑0<l<m<n2nlmn(2nn)=32∑0<l<m≤n2(−1)n(4l−1)(4m−1)(2n+1)
12∑0<n(12)nn4(34)n=∑0<n2nn4(2nn)−∑0<m<n2nm3n(2nn)−∑0<m<n2nm2n2(2nn)−∑0<m<n2nmn3(2nn)+∑0<l<m<n2nl2mn(2nn)+∑0<l<m<n2nlm2n(2nn)+∑0<l<m<n2nlmn2(2nn)−∑0<k<l<m<n2nklmn(2nn)
12∑0<n(12)nnr(34)n=∑j=1r(−1)j−1∑0<n1<⋯<njk1+⋯+kj=r,ki∈Z>02njn1k1⋯njkj(2njnj) (推測)
∑0≤m<n(14)mm!22m(2m+1)(2mm)(2nn)22n(2n+1)=π(1−42πΓ2(14))
∑0≤m≤n12m+1(1+(2mm)22m)22n+2(2n+1)2(2nn)−∑0≤m<n12m+1(1+(2mm)22m)22nn2(2nn)=8β(2)ln2
2β(2)2=∑0≤m<n(1(2m+1)21−(−1)nn2+12m+11−(−1)nn3−π2212m+1(−1)n−1n)
6∑0<n24n(2n+1)3(2nn)2∑m=0n−112m+1∑k=1n1k2=∑0≤m<n(π3(−1)m(2m+1)2−24π(−1)m(2m+1)4+48(2m+1)5)(−1)n−1n
∑0<m≤n(−1)n−1m2(2n+1)+42∑0≤n(2nn)23n(2n+1)3=π36+54πln22−2β(2)ln2+π8∑0<n(2nn)224nn2
∑0<m<n1mn2n(2mm)2m(2nn)=πln22
π∑0<n12nn2n!Γ2(54+n2)=2∑0<m+1<n(2mm)225m(m+1)1n2
(2mm)22m∑m<k22kk(k+n)(2kk)+(2nn)22n∑n<k22kk(k+m)(2kk)=π2(2mm)(2nn)22m+2n
22mm(2mm)∑k=0m−1(2kk)22k(k+n)+22nn(2nn)∑k=0n−1(2kk)22k(k+m)=22m+2nmn(2mm)(2nn)
∑0<m≤n22mm2(2mm)(2nn)22nn2=π2ln22−∑0<m≤n22nmn3(2nn)
4β(2)2π+∑0≤m<n24m(2m+1)2(2mm)2(2nn)224n(2n+1)=2β(2)ln2+12∑0≤n22nHn(2n+1)2(2nn)=2β(3)+∑0<m≤n22mm2(2mm)(2nn)22n(2n+1)
∑0<m≤n22mm2(2mm)(2nn)22n(2n+1)2+2∑0≤n22n(Hn+2ln2)(2n+1)3(2nn)=8t(2)(β(2)−2πln2)
22n(2nn)∑m<k22kk2(2kk)k!n!(k+n)!=22m(2mm)∑n<k22kk2(2kk)k!m!(k+m)!
∑0≤m<n22n(2m+1)n3(2nn)=−π424−32t(3―,1―)
∑0≤m<n(2mm)22m(2m+1)22n(2n+1)3(2nn)=−4t(1―,3―)
∑0<2m≤n1(2m−1)2(−1)nn=18∑0<m<n(2mm)22mm22nn2(2nn)=π2ln28−716ζ(3)
16∑0≤m<n(2nn)(2m+1)2(2n+1)222n=2π∑0<2m<n(−1)n−1m2n=π∑0<m<n(2mm)22mmn2=π3ln23−3πζ(3)2
∑0≤m<n(−1)m+n−1(2m+1)2n=2t(3―)+2t(2,1―)+2t(1,2―)−t(2―)ln2
∑0<2m+1<n24m(2m+1)2(2mm)2(−1)n−1n=−2t(3―)−4t(2,1―)−4t(1,2―)+2t(2―)ln2
πβ(2)ln2=−2t(4)+2πt(1―,2)−4πt(1,2―)+8t(1,3)+∑0≤m<n(π2(−1)m2m+1−1(2m+1)2)1n2−∑0<m≤n4m(π2(−1)n(2n+1)2−1(2n+1)3)
∑0≤n(12+α)n(n+12)2(12)n=∑0<n22nn(n−α)(2nn)
∑0≤n22n(2n+1)2(2nn)=2β(2)
∑0≤n22n(2n+1)3(2nn)=2β(2)ln2−2∑0<m≤n(−1)n−1m(2n+1)2=4t(1―,2)−4t(1,2―)=2t(3―)+4t(2,1―)
∑0≤n22n(2n+1)4(2nn)=ln22∑0≤n22n(2n+1)3(2nn)+78πζ(3)−18π3ln2−2∑0<l≤m≤n(−1)nl(2m+1)2(2n+1)−2∑0<l≤m<n(−1)nl(2m+1)(2n+1)2=4t(2)t(2―)−2t(4―)−8t(2―,2)+8t(1,1,2―)−8t(1,1―,2)=2t(4―)+4t(2,2―)+4t(3,1―)+8t(2,1,1―)
∑0≤n22n(2n+1)a(2nn)=∑wt(k)=ak1≥22jt(k1,…,kj−1,kj―) (訂正後。出処:コメント欄)
∑0<n22nn2(2nn)=4t(2)
∑0<n22nn3(2nn)=−4t(3)−6ζ(2)ζ(1―)
∑0<n22nn4(2nn)=ζ(2,2)+4ζ(2―,2)+4ζ(1―,3)−4ζ(1,3―)+12ζ(2)ζ(1,1―)
∑0<m<n22nmn2(2nn)=7ζ(3)
∑0<m<n22nm2n2(2nn)=4t(4)
∑0<m<n22nmn3(2nn)=14ζ(2,2)−4ζ(2―,2)−4ζ(1―,3)+4ζ(1,3―)+4ζ(3,1―)−4ζ(3―,1―)
∑n=1∞(2nn)224nn2(8β(2)+∑m=1n24mm2(2mm)2)=2π∑n=0∞(2nn)224n(ζ(2)2n+1−4(2n+1)2(∑m=0n12m+1−ln2))
∑n=0∞(2nn)224n(2n+1)2(8β(2)+∑m=1n24mm2(2mm)2)=2πt(3)+4t(2)(πln2−2β(2))−π2∑n=1∞(2nn)224nn2∑m=0n−112m+1
∑n=1∞(2nn)22nn∑k=0n−112k+1∑l=0n−11(2l+1)2=2t(4)+t(2)∑n=1∞(2nn)2Hn24nn=π8∑n=1∞1n2∑m=0n−1(2mm)22m(2m+1)+π8∑n=1∞(2nn)22n(2n+1)∑m=1n22mm2(2mm)=π∑n=1∞(−1)n−1n2∑m=0n−1(−1)m2m+1=π8∑n=1∞24nn3(2nn)2∑m=0n−1(2mm)224m
πx2∑n=0∞(2nn)224n(n+x)=∑n=0∞12n+1(12+x)n(1+x)n
3F2[12,12,α32,β;1]=Γ(β)Γ(12−α+β)Γ(β−α)Γ(12+α)3F2[1,1,α32,12+β;1]
∑n=0∞(2nn)326n(3ζ(2)+∑m=1n22mm2(2mm))=1π∑n=1∞26nn3(2nn)3∑m=0n−1(2mm)224m=4∑n=0∞22n(2n+1)2(2nn)∑m=0n(2mm)326m
∑n=1∞(2nn)326nn(3ζ(2)+∑m=1n22mm2(2mm))=18ζ(2)ln2−4t(3)−4πβ(2)−1π∑n=1∞26nn4(2nn)3∑m=0n−1(2mm)224m
8β(2)=∑n=1∞22nn2(2nn)∑m=0n−1(2mm)224m
2ζ(2)β(2)+∑n=1∞1n2∑m=0n−124m(2m+1)2(2mm)2=∑n=0∞22n+2(2n+1)2(2nn)∑m=0n(π2(2mm)22m(2m+1)−1(2m+1)2)=2∑n=1∞(2nn)(2ln2+Hn)22n(2n+1)∑m=0n−11(2m+1)2=4πt(3)−8β(4)
π211−x2∑n=0∞(2nn)224nx2n=∑n=0∞22nx2n(2n+1)(2nn)∑m=0n(2mm)224mx2m
χ2(12)=56t(2)−18∑n=1∞(4n2n)22nn2(2nn)=t(2)−π16∑n=0∞(2nn)(4n+22n+1)26n(2n+1)
∑n=1∞22nn2(2nn)∑m=0n−1(2mm)224m=2πln2+2∑n=0∞(2nn)Hn22n(2n+1)
π2tanh−1x1−x2+21+x∑n=0∞(−1−x1+x)n(2n+1)2=∑n=0∞(2nn)22nx2n(2β(2)+14∑m=1n24mm2(2mm)2)
2∑n=1∞(α)nn2(2α)n=ζ(2)+ψ′(2α)−(ψ(α)−ψ(2α))2
∑n=0∞(2nn)326n∑m=1n24mm2(2mm)2=(π2−8β(2))∑n=0∞(2nn)326n
ζ(2)+∑n=1∞(2nn)2Hn24nn=1π∑n=1∞24nn3(2nn)2∑m=0n−1(2mm)224m
ζ(3)+∑n=1∞(2nn)224nn(ζ(2)−Hnn)=1π∑n=1∞24nn4(2nn)2∑m=0n−1(2mm)224m
∑n=1∞22nn3(2nn)∑m=0n−1(2mm)224m=4π∑n=0∞(2nn)224n(2n+1)2−16β(2)ln2
∑m=1∞(2mm)22m+1m∑l=0m−124l(2l+1)3(2ll)2−∑m=0n−124m(2m+1)2(2mm)2(π224−12m+1(−ln2+∑k=0m12k+1))=24n(2nn)2∑m=1∞24m(2m)3(2mm)2∑l=0m−1(2ll)224l(2l+2n+1)
∑n=1∞(2x1+x2)2n(2nn)22nn∑m=1n22mm2(2mm)=4χ3(x2)
∑0≤m<n22nn2(2nn)(2mm)224m((−1)m+12m+12)=π2Γ2(14)2
∑0<m≤n22mm2(2mm)(−1)n−1(2nn)224n=∑0≤m<n(2mm)224mn2((−1)m−12m+12)
2∑0<m≤n24mm2(2mm)2(2nn)22n(−1)m+n=∑0≤m<n(2mm)225m22nn2(2nn)
∑0<m<n1m3n2(2nn)=589ζ(5)−49ζ(2)ζ(3)−2π∑0<n1n4sinπn3
∑0<m<n22mm2(2mm)1n2=∑0<m<n(2mm)22mm222nn2(2nn)
∑j=0r−1∑0<m<n(−1)m−1mj+1nr−j((−1)nm−1n)=∑0<m<n(−1)n−1mn(1mr−1nr)
∑m=0n−1(32m+17)26m(4m+1)(2mm)(4m2m)=(4n−1)26n(2nn)(4n2n)+1
Γ(12)Γ(1+a)Γ2(b)Γ(a+b)Γ(12+b)(1+a)n(a+b)n∑0≤m(2mm)(b)m(12+b)m22m(a+b+m+n)=(12+a)n(12+a+b)n(∑0≤m(1−b)mm!(12+a+m)(γ+ψ(1+a)+2ln2+∑k=0m−11k+1+a)+21+2aΓ(1+a)Γ(b)Γ(1+a+b)∑m=0n−1(12+a+b)m(1+a)m(32+a)m(1+a+b)m) (ただしa>−12)
∑m=0∞(2mm)22m(12+a)m(1+a)m(a+m+n)=Γ(a)Γ(12)Γ(12+a)22nn(2nn)(a)n(12+a)n∑m=0n−1(2mm)22m(12+a)m(1+a)m
―
ZC(s)=∑n=0∞(2nn)22n(n+12)s, ZC2(s)=∑n=0∞(2nn)224n(n+12)s, T1(s)=∑n=1∞22nns(2nn)∑m=0n−1(2mm)224m
と定義するとき
∑j=0nZC(j+1)T1(n−j+2)=π2ZC2(n+1)
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。