誤植・誤謬あれば教えてください。収束半径等は明示しません。だいたい1とかπ2だと思いますたぶん。新たな知見を得たら追加したいです。
sin−1x=∑0≤n(2nn)x2n+122n(2n+1)(sin−1x)2=12∑0<n22nx2nn2(2nn)(sin−1x)3=6∑0≤m<n1(2m+1)2(2nn)x2n+122n(2n+1)sin−1x1−x2=∑0<n22n−1x2n−1n(2nn)=∑0≤n22nx2n+1(2n+1)(2nn)tan−1x=∑0≤n(−1)nx2n+12n+1(tan−1x)2=12∑0≤m<n12m+1(−1)n−1x2nn(sin−1x)2a−1(2a−1)!=∑0≤n1<⋯<na1(2n1+1)2⋯(2na−1+1)2(2nana)x2na+122na(2na+1)(sin−1x)2a(2a)!=∑0<n1<⋯<na1(2n1)2⋯(2na−1)222nax2na(2na)2(2nana)11−x2=∑0≤n(2nn)22nx2n∑0<n(2nn)22nnx2n=2ln21+1−x2∑0<n(2nn)22nn2x2n=2∑0<n1n2(1−1−x22)n−ln221+1−x21a!lna11−x=∑0<n1<⋯<naxnan1⋯na(sin−1x)2=∑0<n(2x)nn2cos(ncos−1x)2∑0≤n(2nn)x2n+122n(2n+1)2=∑0<n(2x)nn2sin(ncos−1x)∑0≤n(4n2n)sin2nx24n=cosx2cosx∑0≤n(3nn)22n33nsin2nx=cosx3cosx∑0≤n(1−a2)n(1+a2)n(32)nn!sin2nx=sinaxasinx1sinx=2∑0≤nsin(2n+1)x1cosx=2∑0≤n(−1)ncos(2n+1)x1tanx=2∑0<nsin2nxtanx=2∑0<n(−1)n−1sin2nxln12sinx=∑0<ncos2nxnln2cosx=∑0<n(−1)n−1cos2nxnln1tanx2=2∑0≤ncos(2n+1)x2n+1tanh−1sinx=∑0≤n(−1)nsin(2n+1)x2n+1sinh−1sinx=∑0≤n(2nn)sin(2n+1)x22n(2n+1)cos−1sinx=∑0≤n(2nn)cos(2n+1)x22n(2n+1)∑0<n22nsin2nxn2(2nn)=4cos−1sinxsinh−1sinx∑0<n22ncos2nxn2(2nn)=2(cos−1sinx)2−2(sinh−1sinx)2tanh−1x1!1−x2=∑n=0∞22nx2n+1(2n+1)(2nn)∑m=0n(2mm)224m(tanh−1x)22!1−x2=∑n=1∞(2nn)22nx2n∑m=0n−124m(2m+1)2(2mm)2∑l=0m(2ll)224l(tanh−1x)33!1−x2=∑n=0∞22nx2n+1(2n+1)(2nn)∑m=0n(2mm)224m∑l=0m−124l(2l+1)2(2ll)2∑k=0l(2kk)224k∑0≤m<n(2mm)x2m22m22nn2(2nn)=4∑0≤n(1−x2)n(2n+1)2+21−x2ln11−x2ln1+1−x2xπ2tanh−1x1−x2=∑n=0∞(2nn)22nx2n(2β(2)+14∑m=1n24mm2(2mm)2)−21+x∑n=0∞(−1−x1+x)n(2n+1)2
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。