$ \newcommand{\exi}{\exists\,} \newcommand{\all}{\forall} \newcommand{\equ}{\!=\!} \newcommand{\nequ}{\!\neq\!} \newcommand{\amp}{\;\&\;} \renewcommand{\Set}[2]{\left\{\;#1\mathrel{}\middle|\mathrel{}#2\;\right\}} \newcommand{\parenth}[1]{\left(\;#1\;\right)} \newcommand{\braces}[1]{\left\{\;#1\;\right\}} \newcommand{\bracket}[1]{\left[\;#1\;\right]} \newcommand{\godel}[1]{\left\ulcorner #1 \right\urcorner} $
$\text{cof}(\beta, \alpha) :\Leftrightarrow \exi f:\beta \to \alpha \left\{
\begin{array}{}
& \all \alpha_0 \in \alpha \exi \beta_0 \in \beta \;\; \alpha_0 \lt f`\beta_0 \\
\land & \all \beta_0, \beta_1 \in \beta \;[ \beta_0 \in \beta_1 \Leftrightarrow f`\beta_0 \in f`\beta_1]
\end{array}\right.$
$\text{cf}(\alpha) :\equiv \min_{\beta} \text{cof}(\beta, \alpha)$
$\aleph(\alpha) \text{は弱到達不可能基数} :\Leftrightarrow \left\{\begin{array}{}
& \alpha \in \text{Lim} \\
\land & \text{cf}(\aleph(\alpha)) \equ \aleph(\alpha)
\end{array}\right.$
$\aleph(\alpha) \text{は弱到達不可能基数} \Leftrightarrow \bracket{ \text{cf}(\alpha) \equ \alpha \equ \aleph(\alpha)}$
$\begin{array}{}
& \aleph(\alpha) \text{は強到達不可能基数} \\
& \text{Inac}(\aleph(\alpha))
\end{array}
:\Leftrightarrow \left\{\begin{array}{}
& 0 \lt \alpha \\
\land & \text{cf}(\aleph(\alpha)) \equ \aleph(\alpha) \\
\land & \all \beta \lt \alpha \;\; 2^{\aleph(\beta)} \lt \aleph(\alpha)
\end{array}\right.$