$$\newcommand{ds}[0]{\displaystyle}
\newcommand{Li}[0]{{\rm Li}}
\newcommand{ol}[1]{\overline{#1}}
$$
ユミルさんの固ツイの積分
を全部求めます。NKSさんによる特殊値の表を利用しています。許可が取れ次第その表を投稿しようと思います。
\begin{align}
(1)&&\int_0^1\frac{\ln x\ln(1+x)}{1+x}dx &=-\frac18\zeta(3) \\
(2)&&\int_0^1\frac{\ln x\ln(1-x)}{1-x}dx &=\zeta(3) \\
(3)&&\int_0^1\frac{\ln x\ln(1-x)}{1+x}dx &=\frac{13}{8}\zeta(3)-\frac32\zeta(2)\ln2 \\
(4)&&\int_0^1\frac{\ln x\ln(1+x)}{1-x}dx &=\zeta(3)-\frac32\zeta(2)\ln2 \\
(5)&&\int_0^1\frac{\ln^2x\ln(1-x)}{1-x}dx&=-\frac12\zeta(4) \\
(6)&&\int_0^1\frac{\ln^2x\ln(1-x)}{1+x}dx&=3\zeta(4)+\frac72\zeta(3)\ln2-\zeta(2)\ln^22+\frac16\ln^42+4\Li_4\left(\frac12\right) \\
(7)&&\int_0^1\frac{\ln^2x\ln(1+x)}{1-x}dx&=\zeta(4)+\zeta(2)\ln^22-\frac16\ln^42-4\Li_4\left(\frac12\right) \\
(8)&&\int_0^1\frac{\ln^2x\ln(1+x)}{1+x}dx&=-\frac{19}{8}\zeta(4)+\frac{7}{2}\zeta(3)\ln2 \\
\end{align}
\begin{align}
(9)&&\int_0^1\frac{\ln(1-x)\ln x\ln(1+x)}{1-x}dx&=\frac{17}{16}\zeta(4)+\frac78\zeta(3)\ln2-\frac14\zeta(2)\ln^22-\frac{1}{12}\ln^42-2\Li_4\left(\frac12\right) \\
(10)&&\int_0^1\frac{\ln(1-x)\ln x\ln(1+x)}{1+x}dx&=-2\zeta(4)+\frac{21}{8}\zeta(3)\ln2-\frac54\zeta(2)\ln^22+\frac{1}{12}\ln^42+2\Li_4\left(\frac12\right)
\end{align}
$(1)$の証明
\begin{align}
\int_0^1\frac{\ln x\ln(1+x)}{1+x}dx&=-\int_0^1\frac{dx}{-1-x}\int_x^1\frac{-ds}{s}\int_0^x\frac{dt}{1+t} \\
&=-\int_0^1\frac{dx}{-1-x}\int_x^1\frac{ds}{s}\int_0^x\frac{dt}{-1-t} \\
&=-\int_{0< t< x< s<1}\frac{dt}{-1-t}\frac{dx}{-1-x}\frac{ds}{s} \\
&=-\int_0^1\frac{ds}{s}\int_0^s\frac{dx}{-1-x}\int_0^x\frac{dt}{-1-t} \\
&=-\int_0^1z_{2,1}z_{1,1} \\
&=-\zeta(1,\ol2) \\
&=-\frac18\zeta(3)
\end{align}
$(2)$の証明
\begin{align}
\int_0^1\frac{\ln x\ln(1-x)}{1-x}dx&=\int_0^1\frac{dx}{1-x}\int_x^1\frac{-ds}{s}\int_0^x\frac{-dt}{1-t} \\
&=\int_0^1\frac{dx}{1-x}\int_x^1\frac{ds}{s}\int_0^x\frac{dt}{1-t} \\
&=\int_{0< t< x< s<1}\frac{dt}{1-t}\frac{dx}{1-x}\frac{ds}{s} \\
&=\int_0^1\frac{ds}{s}\int_0^s\frac{dx}{1-x}\int_0^x\frac{dt}{1-t} \\
&=\int_0^1z_{2,0}z_{1,0} \\
&=\zeta(1,2) \\
&=\zeta(3)
\end{align}
$(3)$の証明
\begin{align}
\int_0^1\frac{\ln x\ln(1-x)}{1+x}dx&=\int_0^1\frac{dx}{1+x}\int_x^1\frac{-ds}{s}\int_0^x\frac{-dt}{1-t} \\
&=-\int_0^1\frac{dx}{-1-x}\int_x^1\frac{ds}{s}\int_0^x\frac{dt}{1-t} \\
&=-\int_{0< t< x< s<1}\frac{dt}{1-t}\frac{dx}{-1-x}\frac{ds}{s} \\
&=-\int_0^1\frac{ds}{s}\int_0^s\frac{dx}{-1-x}\int_0^x\frac{dt}{1-t} \\
&=-\int_0^1z_{2,1}z_{1,0} \\
&=-\zeta(\ol1,\ol2) \\
&=\frac{13}{8}\zeta(3)-\frac32\zeta(2)\ln2
\end{align}
$(4)$の証明
\begin{align}
\int_0^1\frac{\ln x\ln(1+x)}{1-x}dx&=\int_0^1\frac{dx}{1-x}\int_x^1\frac{-ds}{s}\int_0^x\frac{dt}{1+t} \\
&=\int_0^1\frac{dx}{1-x}\int_x^1\frac{ds}{s}\int_0^x\frac{dt}{-1-t} \\
&=\int_{0< t< x< s<1}\frac{dt}{-1-t}\frac{dx}{1-x}\frac{ds}{s} \\
&=\int_0^1\frac{ds}{s}\int_0^s\frac{dx}{1-x}\int_0^x\frac{dt}{-1-t} \\
&=\int_0^1z_{2,0}z_{1,1} \\
&=\zeta(\ol1,2) \\
&=\zeta(3)-\frac32\zeta(2)\ln2
\end{align}
$(5)$の証明
\begin{align}
\int_0^1\frac{\ln^2x\ln(1-x)}{1-x}dx&=\int_0^1\frac{dx}{1-x}\int_x^1\frac{-ds}{s}\int_x^1\frac{-du}{u}\int_0^x\frac{-dt}{1-t} \\
&=-\int_0^1\frac{dx}{1-x}\int_x^1\frac{ds}{s}\int_x^1\frac{du}{u}\int_0^x\frac{dt}{1-t} \\
&=-\int_{0< t< x< s,u<1}\frac{dt}{1-t}\frac{dx}{1-x}\frac{ds}{s}\frac{du}{u} \\
&=-2\int_0^1\frac{ds}{s}\int_0^s\frac{du}{u}\int_0^u\frac{dx}{1-x}\int_0^x\frac{dt}{1-t} \\
&=-2\int_0^1z_{3,0}z_{1,0} \\
&=-2\zeta(1,3) \\
&=-\frac12\zeta(4)
\end{align}
$(6)$の証明
\begin{align}
\int_0^1\frac{\ln^2x\ln(1-x)}{1+x}dx&=\int_0^1\frac{dx}{1+x}\int_x^1\frac{-ds}{s}\int_x^1\frac{-du}{u}\int_0^x\frac{-dt}{1-t} \\
&=-\int_0^1\frac{dx}{1+x}\int_x^1\frac{ds}{s}\int_x^1\frac{du}{u}\int_0^x\frac{dt}{1-t} \\
&=\int_{0< t< x< s,u<1}\frac{dt}{1-t}\frac{dx}{-1-x}\frac{ds}{s}\frac{du}{u} \\
&=2\int_0^1\frac{ds}{s}\int_0^s\frac{du}{u}\int_0^u\frac{dx}{-1-x}\int_0^x\frac{dt}{1-t} \\
&=2\int_0^1z_{3,1}z_{1,0} \\
&=2\zeta(\ol1,\ol3) \\
&=3\zeta(4)+\frac72\zeta(3)\ln2-\zeta(2)\ln^22+\frac16\ln^42+4\Li_4\left(\frac12\right)
\end{align}
$(7)$の証明
\begin{align}
\int_0^1\frac{\ln^2x\ln(1+x)}{1-x}dx&=\int_0^1\frac{dx}{1-x}\int_x^1\frac{-ds}{s}\int_x^1\frac{-du}{u}\int_0^x\frac{dt}{1+t} \\
&=-\int_0^1\frac{dx}{1-x}\int_x^1\frac{ds}{s}\int_x^1\frac{du}{u}\int_0^x\frac{dt}{-1-t} \\
&=-\int_{0< t< x< s,u<1}\frac{dt}{-1-t}\frac{dx}{1-x}\frac{ds}{s}\frac{du}{u} \\
&=-2\int_0^1\frac{ds}{s}\int_0^s\frac{du}{u}\int_0^u\frac{dx}{1-x}\int_0^x\frac{dt}{-1-t} \\
&=-2\int_0^1z_{3,0}z_{1,1} \\
&=-2\zeta(\ol1,3) \\
&=\zeta(4)+\zeta(2)\ln^22-\frac16\ln^42-4\Li_4\left(\frac12\right)
\end{align}
$(8)$の証明
\begin{align}
\int_0^1\frac{\ln^2x\ln(1+x)}{1+x}dx&=\int_0^1\frac{dx}{1+x}\int_x^1\frac{-ds}{s}\int_x^1\frac{-du}{u}\int_0^x\frac{dt}{1+t} \\
&=\int_0^1\frac{dx}{-1-x}\int_x^1\frac{ds}{s}\int_x^1\frac{du}{u}\int_0^x\frac{dt}{-1-t} \\
&=\int_{0< t< x< s,u<1}\frac{dt}{-1-t}\frac{dx}{-1-x}\frac{ds}{s}\frac{du}{u} \\
&=2\int_0^1\frac{ds}{s}\int_0^s\frac{du}{u}\int_0^u\frac{dx}{-1-x}\int_0^x\frac{dt}{-1-t} \\
&=2\int_0^1z_{3,1}z_{1,1} \\
&=2\zeta(1,\ol3) \\
&=-\frac{19}{8}\zeta(4)+\frac{7}{2}\zeta(3)\ln2
\end{align}
$(9)$の証明
\begin{align}
\int_0^1\frac{\ln(1-x)\ln x\ln(1+x)}{1-x}dx=&\int_0^1\frac{dx}{1-x}\int_0^x\frac{-ds}{1-s}\int_x^1\frac{-du}{u}\int_0^x\frac{dt}{1+t} \\
=&-\int_0^1\frac{dx}{1-x}\int_0^x\frac{ds}{1-s}\int_x^1\frac{du}{u}\int_0^x\frac{dt}{-1-t} \\
=&-\int_{0< s,t< x< u<1}\frac{dt}{-1-t}\frac{dx}{1-x}\frac{ds}{1-s}\frac{du}{u} \\
=&-\int_0^1\frac{du}{u}\int_0^u\frac{dx}{1-x}\int_0^x\frac{dt}{-1-t}\int_0^t\frac{ds}{1-s} \\
&-\int_0^1\frac{du}{u}\int_0^u\frac{dx}{1-x}\int_0^x\frac{ds}{1-s}\int_0^s\frac{dt}{-1-t} \\
=&-\int_0^1z_{2,0}z_{1,1}z_{1,0}+z_{2,0}z_{1,0}z_{1,1} \\
=&-\zeta(\ol1,\ol1,2)-\zeta(\ol1,1,2) \\
=&\frac{17}{16}\zeta(4)+\frac78\zeta(3)\ln2-\frac14\zeta(2)\ln^22-\frac{1}{12}\ln^42-2\Li_4\left(\frac12\right)
\end{align}
$(10)$の証明
\begin{align}
\int_0^1\frac{\ln(1-x)\ln x\ln(1+x)}{1+x}dx=&\int_0^1\frac{dx}{1+x}\int_0^x\frac{-ds}{1-s}\int_x^1\frac{-du}{u}\int_0^x\frac{dt}{1+t} \\
=&\int_0^1\frac{dx}{-1-x}\int_0^x\frac{ds}{1-s}\int_x^1\frac{du}{u}\int_0^x\frac{dt}{-1-t} \\
=&\int_{0< s,t< x< u<1}\frac{dt}{-1-t}\frac{dx}{-1-x}\frac{ds}{1-s}\frac{du}{u} \\
=&\int_0^1\frac{du}{u}\int_0^u\frac{dx}{-1-x}\int_0^x\frac{dt}{-1-t}\int_0^t\frac{ds}{1-s} \\
&+\int_0^1\frac{du}{u}\int_0^u\frac{dx}{-1-x}\int_0^x\frac{ds}{1-s}\int_0^s\frac{dt}{-1-t} \\
=&\int_0^1z_{2,1}z_{1,1}z_{1,0}+z_{2,1}z_{1,0}z_{1,1} \\
=&\zeta(\ol1,1,\ol2)+\zeta(\ol1,\ol1,\ol2) \\
=&-2\zeta(4)+\frac{21}{8}\zeta(3)\ln2-\frac54\zeta(2)\ln^22+\frac{1}{12}\ln^42+2\Li_4\left(\frac12\right)
\end{align}