ならi∫0∞f(a+iy)e2πye−2πia−1−f(a−iy)e2πye2πia−1dy=i∑k=0Mf(k)(a)k!∫0∞((i)kyke2πye−2πia−1−(−i)kyke2πye2πia−1)dy=i∑k=0Mf(k)(a)k!∫0∞((i)kyke−2πye2πia1−e−2πye2πia−(−i)kyke−2πye−2πia1−e−2πye−2πia)dy=i∑k=0Mf(k)(a)k!∫0∞(∑n=1∞(i)kyke−2πnye2πian−(−i)kyke−2πnye−2πian)dy (2πny=t)=i∑k=0Mf(k)(a)k!∫0∞(∑n=1∞e2πian(2πn)k+1(i)ktke−t−e−2πian(2πn)k+1(−i)ktke−t)dt=i∑k=0Mf(k)(a)k!(∑n=1∞e2πian(2πn)k+1(i)kk!−e−2πian(2πn)k+1(−i)kk!)=∑k=0Mf(k)(a)k!(∑n=1∞e2πian+2πi(k+1)4(2πn)k+1k!+e−2πian−2πi(k+1)4(2πn)k+1k!)=∑k=0Mf(k)(a)k!∑n=1∞2cos(2πan+2π(k+1)4)(2πn)k+1k!=∑k=0Mf(k)(a)(k+1)!∑n=1∞2cos(2π(−a)n−2π(k+1)4)(2πn)k+1(k+1)!=−∑k=0Mf(k)(a)(k+1)!B^k+1(−a) (0<a<1なら)=−∑k=0Mf(k)(a)(k+1)!Bk+1(1−a)=∑k=0M(−1)kf(k)(a)(k+1)!Bk+1(a)以上より
i∫0∞f(a+iy)e2πye−2πia−1−f(a−iy)e2πye2πia−1−f(b+iy)e2πye−2πib−1+f(b−iy)e2πye2πib−1dy=−∑k=0M1(k+1)!(f(k)(a)B^k+1(−a)−f(k)(b)B^k+1(−b))
補足Mは多項式f(x)の次数B^k(x)は周期ベルヌーイ多項式
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。