4

Fourier級数展開の魅力

55
0

はじめまして。わにと申します。思いつきでやっていこうと思います。

いまフーリエ解析について勉強していて、そこで魅力的な級数を見つけたので挨拶代わりにそちらを載せようと思います。

n=(1)n1+n2=πsinhπ

f(x)=exとしてan,bnを計算してフーリエ級数展開すると
f(x) eπeππ{12+n=1(1)n1+n2(cosnxnsinnx)}

x=0を代入して整理すると
n=1(1)n1+n2=πeπeπ12
これをn=0,また負の整数まで拡張すると以下の美しい結論が求まる.

n=(1)n1+n2=2πeπeπ=πsinhπ

目次やら綺麗な囲いがどうするのかまだ分からないのでやりながら覚えようと思います。
良ければフォローなり反応いただければ幸いです。

投稿日:2020119
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

Wani
Wani
9
223

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中