$$$$
問題
\begin{align*}
\lim_{x\to 0} \Gamma(x)\left(2\sin\left(\frac{\pi}{2}x\right)\psi(x) + \pi \cos\left(\frac{\pi}{2}x\right)\right) ~=~?
\end{align*}
\begin{align*}
&\lim_{x\to 0} \Gamma(x) \left(2\sin\left(\frac{\pi}{2}x\right)\psi(x) + \pi \cos\left(\frac{\pi}{2}x\right)\right) \\
&= \lim_{x\to 0} \Gamma(x+1) \frac{2\sin\left(\frac{\pi}{2}x\right)\psi(x) + \pi \cos\left(\frac{\pi}{2}x\right)}{x}\\
&= \lim_{x\to 0} \frac{\pi + 2\sin\left(\frac{\pi}{2}x\right)\psi(x)}{x} + \pi \lim_{x\to 0} \frac{\cos\left(\frac{\pi}{2}x\right) - 1}{x} \\
&= \lim_{x\to 0} \frac{\pi + 2\sin\left(\frac{\pi}{2}x\right)\psi(x+1) - \frac{2\sin\left(\frac{\pi}{2}x\right)}{x}}{x} + \frac{\pi^2}{2} \lim_{x\to 0} \frac{\cos(x) - 1}{x} \\
&= \lim_{x\to 0} \frac{\pi - \frac{2\sin\left(\frac{\pi}{2}x\right)}{x}}{x} + 2\lim_{x\to 0} \frac{\sin\left(\frac{\pi}{2}x\right)\psi(x+1)}{x}\\
&= \frac{\pi^2}{2}\lim_{x\to 0} \frac{1 - \frac{\sin x}{x}}{x} - \gamma \pi \lim_{x\to 0} \frac{\sin x}{x}~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\psi(1)=-\gamma) \\
&= \frac{\pi^2}{2}\lim_{x\to 0} \frac{x - \sin x}{x^2} - \gamma \pi \\
&= \frac{\pi^2}{2}\lim_{x\to 0} \frac{1 - \cos x}{2x} - \gamma \pi \\
&= -\gamma \pi
\end{align*}
一般化
\begin{align*}
\lim_{x\to 0} \Gamma(ax)\left(p\sin(bx)\psi(cx) + q\cos(dx)\right) = -\frac{pb}{a}\gamma~~~\left(a>0,~\frac{p}{q}=\frac{c}{b}\right)
\end{align*}