22

積分問題集

3470
0
$$$$

関数についての補足は青いところをタップしてもらえばwikipediaに飛べます.

初級


\begin{eqnarray} (1)\int_{-\pi/2}^{\pi/2}\frac{\cos^2 x}{1+e^{\sin x}}dx=\frac{\pi}{4} \end{eqnarray}
\begin{eqnarray} (2)\int_{0}^{\pi}\arccos \cos^{2n+1}x dx=\frac{\pi^2}{2} \end{eqnarray}
\begin{eqnarray} (3)\int \prod_{k=1}^{n}a_k(x)dx=a_n(x)+C (a_{n+1}(x)=e^{a_n(x)},a_1(x)=e^x) \end{eqnarray}
\begin{eqnarray} (4)\int_{0}^{π}\frac{x}{a+\cos^2 x}dx&=&\frac{\pi^2}{2\sqrt{a(1+a)}} (a>0)\\ \end{eqnarray}
\begin{eqnarray} (5)\int_{0}^{\infty}\frac{1}{(1+x^2)(9+x^2)(25+x^2)}dx&=&\frac{π}{640}\\ \end{eqnarray}
\begin{eqnarray} (6)\int_{0}^{2π}\frac{dθ}{\coshφ+\cosθ}&=&\frac{2π}{\sinhφ} \ (φ>0)\\ \end{eqnarray}
\begin{eqnarray} (7)\int_{0}^{1}\frac{x}{x^5+x^4+x^3+x^2+x+1}dx &=&\frac{π}{12\sqrt{3}}+\frac{1}{4}\ln 3-\frac{1}{3}\ln 2\\ \end{eqnarray}
\begin{eqnarray} (8)\int_{0}^{1}\frac{\ln^{s-1}\frac{1}{x}}{1-x}dx&=&Γ(s)ζ(s) (\Re s>1) \end{eqnarray}
\begin{eqnarray} (9)\int_{0}^{1}\frac{x}{\sqrt{1-x^2}}\ln\frac{1+zx}{1-zx}dx&=&π\frac{1-\sqrt{1-z^2}}{z}  (|z|<1) \end{eqnarray}
\begin{eqnarray} (10)\int_{0}^{\infty}\frac{\sin x}{x}e^{-ax}dx&=&\arctan\frac{1}{a} (a≥0) \end{eqnarray}

中級

Fは 超幾何級数


$ζ(\boldsymbol{n})$ 多重ゼータ値

$\{a\}^n=\{a,a,…,a\}$(n個)とする


\begin{eqnarray} (1)\int_{0}^{\pi /2}\tan x\arctan\frac{a\sin 2x}{1-a\cos 2x}dx =\frac{\pi}{2}\ln(1+a) (|a|<1) \end{eqnarray}
\begin{eqnarray} (2)\int_{0}^{\infty}\frac{\ln(a^2+x^2)}{1+x^2}dx=\pi\ln(1+a) (a≥0) \end{eqnarray}
\begin{eqnarray} (3)\int_{0}^{\infty}\frac{\sin ax\sinh x}{\cosh^2 x}dx=\frac{\pi a}{2\cosh\frac{\pi a}{2}} \end{eqnarray}
\begin{eqnarray} (4)\int_{0}^{1}\sin\pi x\ln Γ(x)dx =\frac{1}{\pi}(\ln\frac{\pi}{2}+1) \end{eqnarray}
\begin{eqnarray} (5)\int_{0}^{1}\frac{1+x^2}{\sqrt{1+x^4}+x^2}\ln x dx =-\frac{\Gamma(\frac{1}{4})^2}{18π} \end{eqnarray}
\begin{eqnarray} (6)\int_{0}^{\infty} \frac{\tanh x}{x}e^{-4ax}dx =\ln\frac{2^{4a-2}Γ(a+1)Γ(a)^3}{Γ(2a)^2π} (a>0) \end{eqnarray}
\begin{eqnarray} (7)\int_{0}^{\infty} \frac{dx}{(1+z\cosh^2x)^s} =\frac{2^{2s-2}}{(1+z)^s}\frac{Γ(s)^2}{Γ(2s)} {_2F_1}\left[ \begin{array} ss,\frac{1}{2}\\s+\frac{1}{2} \end{array} ;\frac{1}{1+z}\right] \end{eqnarray}
\begin{eqnarray} (8)\int_{-\infty}^{\infty}\frac{\sin x}{\prod_{k=0}^{n}(x+k)}dx =\frac{2^n}{n!}\pi  \end{eqnarray}
\begin{eqnarray} (9)\int_{0}^{\infty}\frac{\sin x}{x}\prod_{k=1}^{n}\frac{\sin a_k x}{a_kx}dx=\frac{\pi}{2} (a_m>0,\sum_{k=1}^{n}a_k<1) \end{eqnarray}
\begin{eqnarray} (10)\int_{0}^{1}\frac{\ln^nx\ln^m(1-x)}{x(1-x)}dx=n!m!(-1)^{n+m}(ζ(\{1\}^m,n+1)+ζ(\{1\}^{m-1},n+2)) \end{eqnarray}

上級


\begin{eqnarray} (1)\int_{0}^{1}\frac{\ln x\ln(1+x)}{x (1+x)}dx=-\frac{5}{8}ζ(3) \end{eqnarray}
\begin{eqnarray} (2)\int_{0}^{\pi /2}\frac{x}{\sqrt{\tan x}}dx =\frac{\pi}{2\sqrt{2}}(\frac{\pi}{2}-\ln 2) \end{eqnarray}
\begin{eqnarray} (3)\int_{0}^{1}\frac{\arctan^3x}{x^3}dx =\frac{3}{2}\beta(2)+\frac{3}{8}\pi\ln2-\frac{3}{32}\pi^2-\frac{\pi^3}{64} \end{eqnarray}
\begin{eqnarray} (4)\int_{0}^{\pi /2}\frac{x^4}{\tan x}dx=\frac{\pi^2}{16}\ln 2+\frac{93}{32}ζ(5)-\frac{9}{16}\pi^2ζ(3) \end{eqnarray}
\begin{eqnarray} (5)\int_{0}^{\infty}\frac{\cos\alpha x}{\cosh x+\cos\beta\pi}dx =\frac{\pi\sinh\alpha\beta x}{\sinh\alpha\pi\sin\beta\pi} \end{eqnarray}
\begin{eqnarray} (6)\int_{0}^{\pi}\sin^{2n+1}x e^{-tx}dx=\frac{(2n+1)!}{\prod_{k=0}^{n}(t^2+(2k+1)^2)}(1+e^{-\pi t}) \end{eqnarray}
\begin{eqnarray} (7)\int_{0}^{\infty}\frac{x^{s+1}}{x^2+1}\frac{\sin(x-s\arctan\frac{1}{ax})}{(1+a^2x^2)^{s/2}}dx =\frac{\pi}{2e(a+1)^s} (a,s>0) \end{eqnarray}
\begin{eqnarray} (8)\int_{0}^{\infty}\left(\frac{\sin x}{x}\arcsin a\sin x\right)^2dx =\frac{\pi}{4}\mathrm{Li}_2(a^2) (|a|<1) \end{eqnarray}
\begin{eqnarray} (9)\int_{0}^{\infty}x\ln\left(1+\frac{1}{\cosh x}\right)dx=\frac{21}{16}ζ(3) \end{eqnarray}
\begin{eqnarray} (10)\int_{0}^{1}\frac{\ln(1-x)}{1+s^2x^2}dx=\frac{\arctan s\ln(1+s^2)}{2s}-\sum_{n≥0}\frac{(-1)^n}{(2n+1)^2}s^{2n} (|s|<1) \end{eqnarray}

超級

\begin{eqnarray}ζ_a(k):=\sum_{n≥0}\frac{1}{(n+a)^k} \end{eqnarray}
のように フルヴィッツのゼータ関数 とする.
wikiとは少し違うが多重ゼータ値と見分けるためにこのように定義した.

\begin{eqnarray} K(k):=\int_{0}^{\pi /2}\frac{dx}{\sqrt{1-k^2\sin^2x}} \end{eqnarray}
楕円積分 とする.


\begin{eqnarray} (1)\int_{0}^{1}\frac{K(tx)}{\sqrt{1-x^2}}dx=K\left(\sqrt{\frac{1-\sqrt{1-t^2}}{2}}\right)^2 \end{eqnarray}
\begin{eqnarray} (2)\int_{0}^{\pi /2}\frac{\ln (t\cos x)}{\ln^2(t\cos x)+x^2}dx=\frac{\pi}{2\ln\frac{t}{2}} (0< t<1) \end{eqnarray}
\begin{eqnarray} (3)\int_{0}^{1}\frac{\pi}{4x^2}-\frac{\tan^{-1}\frac{1}{\sqrt{1+x^2}}}{x^2\sqrt{1+x^2}}dx =\frac{3}{\sqrt{2}}\tan^{-1}\frac{1}{\sqrt{2}}-\frac{\pi}{4} \end{eqnarray}
\begin{eqnarray} (4)\int_{0}^{\infty}\frac{\cos(s\tan^{-1}x)}{(1+x^2)^{s/2}}\frac{dx}{\cosh\pi x+\cos 2\pi t} =\frac{1}{2^s\sin 2πt}(ζ_{1-t}(s)-ζ_{1+t}(s)) \end{eqnarray}
(5)✕
\begin{eqnarray} (6)\int_{0}^{\pi}\frac{x^2}{\ln^2(t\sin x)+x^2}dx=\frac{2\pi^2}{4\ln^2 \frac{t}{2}+\pi^2} (0< t<1) \end{eqnarray}
\begin{eqnarray} (7)\int_{-\infty}^{\infty}\frac{1+s\cosh πx}{1+2s\cosh πx+s^2}\frac{dx} {x^2+1}=\pi(\frac{1}{1-s}+\frac{1}{\ln s}) \end{eqnarray}
\begin{eqnarray} (8)\int_{0}^{\infty}\arctan^2\frac{2ax}{1-a+(1+a)x^2}\frac{dx}{1+x^2}=\frac{\pi}{4}\mathrm{Li}_2(a) \end{eqnarray}
\begin{eqnarray} (9)\int_{-\infty}^{\infty}\frac{\sin(s\tan^{-1}\frac{x}{z})}{(z^2+x^2)^{s/2}}\frac{dx}{e^{2\pi x}-1}dx=-\frac{1}{2z^s}+\sum_{n≥0}\frac{1}{(n+z)^s} \end{eqnarray}
\begin{eqnarray} (10)\int_{0}^{1}xK(x)^2dx=\frac{7}{4} ζ(3) \end{eqnarray}
投稿日:20231223
更新日:128

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

KBHM
KBHM
133
9487
怠惰

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中