$$\newcommand{genprodsum}[4]{{}^{#3}\!\!\underset{#1}{\overset{#2}{\Large \triangle{}}}#4}
\newcommand{gprod}[3]{\underset{#1}{\overset{#2}{\prod{}}}#3}
\newcommand{gsum}[3]{\underset{#1}{\overset{#2}{\sum{}}}#3}
\newcommand{prodsum}[3]{\underset{#1}{\overset{#2}{\huge \triangle{}}}#3}
\newcommand{tangle}[2]{\underset{#1}{\overset{#2}{\Large \mathrm{T}}}}}
$$
主張
絡分・解分は底に依存しない
$p\neq0$に対して、
$$
p^{\int \log_p f(x) dx} = \exp\left( \int \ln f(x) dx\right)
$$
$$
p^{\frac{d}{dx} \log_p f(x)} = \exp\left( \frac{d}{dx} \ln f(x)\right)
$$
材料
べき乗の底の変換
$$
p^x = (e^{lnp})^x = \exp(x\ln p)
$$
対数の底の変換
$$
\log_px = \frac{\ln x}{\ln p}
$$
証明
$$ p^{\int \log_p f(x) dx} = \exp\left( \ln p \cdot \int \frac{\ln f(x)}{\ln p} dx\right) = \exp\left( \int \ln f(x) dx\right)$$
解分も同様