調和数つき級数について, 簡単なことですが, メモ程度に少し書かせていただきます.
$\ds H_n^{(m)}=\sum_{k=1}^n\frac1{k^m}$ とします.
$$\beq
\sumn\frac{H_n^{(a)}}{n^b}&=&\sumn\frac1{n^b}\sum_{m=1}^n\frac1{m^a}\\
&=&\ds\sum_{m=1}^\infty\sum_{n=m^{_{}}}^\infty\frac{1}{m^an^b}\\
&=&\sum_{n=1}^\infty\frac1{n^{a+b}}+\sum_{0< m< n}\frac1{m^an^b}\\
&=&\zeta(a+b)+\zeta(a,b)
\eeq$$
${}$
$$\beq \sumn\bigg(\frac{H_n^{(a)}}{n^b}+\frac{H_n^{(b)}}{n^a}\bigg)&=&\ds\sum_{m=1}^\infty\sum_{n=m^{_{}}}^\infty\frac{1}{m^an^b}+\ds\sum_{n=1}^\infty\sum_{m=1}^n\frac{1}{n^am^b}\\ &=&\sum_{n=1}^\infty\frac1{n^{a+b}}+\sum_{0< m,n}\frac1{m^an^b}\\ &=&\zeta(a+b)+\zeta(a)\zeta(b) \eeq$$
特に$a=b$として,
$$\beq
\sumn\frac{H_n^{(a)}}{n^a}&=&\frac12\big(\zeta(a)^2+\zeta(2a)\big)
\eeq$$
${}$
$$\beq
\sum_{n=0}^\infty\big(\zeta(a)-H_n^{(a)}\big)&=&\sum_{n=0}^\infty\sum_{m=n+1}^\infty\frac1{m^a}\\
&=&\sum_{m=1}^\infty\frac1{m^a}\sum_{n=0}^{m-1}1\\
&=&\zeta(a-1)
\eeq$$
${}$
$$\beq
\sum_{0< a_1,a_2,\ldots,a_n}\frac1{a_1\cdots a_n(a_1+\cdots+a_n)}&=&\sum_{0< a_1,a_2,\ldots,a_n}\frac{1}{a_1\cdots a_n}\int_0^1x^{a_1+\cdots+a_n}\frac{dx}{x}\\
&=&(-1)^n\int_0^1\frac{\log^n(1-x)}{x}\,dx\\
&=&(-1)^n\int_0^1\frac{\log^n(x)}{1-x}\,dx\\
&=&n!\zeta(n+1)
\eeq$$
${}$