$$$$
\begin{align*}
\int_0^{\infty}\left(x + \frac{1}{x}\right)\left(\frac{1}{e^x} - \frac{x}{e^x - 1}\right) dx~=~?
\end{align*}
解説
$$\begin{align*}
&\int_0^{\infty}\left(x + \frac{1}{x}\right)\left(\frac{1}{e^x} - \frac{x}{e^x - 1}\right) dx \\
&= \int_0^{\infty} \left(\frac{x}{e^x} - \frac{x^2}{e^x - 1}\right) dx + \int_0^{\infty} \left(\frac{1}{xe^x} - \frac{1}{e^x - 1}\right) dx\\
&= \int_0^{\infty}xe^{-x} dx - \int_0^{\infty} \frac{x^2}{e^x - 1} dx - \gamma \\
&= \Gamma(1) - \Gamma(3)\zeta(3) - \gamma \\
&= 1 - 2\zeta(3) -\gamma
\end{align*}$$