$$$$
問題
\begin{align*}
\int_0^{\infty}\frac{x^{n-1}e^x}{\sinh x \cosh x} dx~=~?~~~~~(n>1)
\end{align*}
解答
\begin{align*}
&\int_0^{\infty}\frac{x^{n-1}e^x}{\sinh x \cosh x} dx \\
&= \int_0^{\infty} \frac{4x^{n-1}e^x}{(e^x - e^{-x})(e^x + e^{-x})} dx \\
&= 2 \int_0^{\infty} x^{n-1} \left(\frac{1}{e^x - e^{-x}} + \frac{1}{e^x + e^{-x}}\right) dx\\
&= 2\int_0^{\infty} \frac{x^{n-1}e^{-x}}{1-e^{2x}} dx + \int_0^{\infty} \frac{x^{n-1}e^{-x}}{1+e^{-2x}} dx\\
&= 2\int_0^{\infty} \frac{\left(\frac{t}{2}\right)^{n-1}e^{-\frac{t}{2}}}{1-e^{-t}} dt + 2\Gamma(n)\beta(n) \\
&= \frac{(-1)^n}{2^{n-1}}\psi^{(n-1)}\left(\frac12\right) + 2(n-1)!\beta(n) \\
&= \frac{(-1)^n}{2^{n-1}}\cdot (-1)^n(n-1)! \sum_{k=0}^{\infty} \frac{1}{\left(\frac12 + k\right)^n} + 2(n-1)!\beta(n)\\
&= 2(n-1)! \sum_{k=0}^{\infty} \frac{1}{(2k+1)^n} + 2(n-1)!\beta(n) \\
&= 2(n-1)! \left(\sum_{k=1}^{\infty} \frac{1}{k^n} - \sum_{k=1}^{\infty} \frac{1}{(2k)^n} \right) + 2(n-1)!\beta(n) \\
&= 2(n-1)! \left((1-2^{-n})\zeta(n) + \beta(n)\right)
\end{align*}