5

タイトル未設定

64
0

\textbf{Notebook:A set of questions and solutions.}

Keep updating
Just a draft version

  1. Use mathematical analysis to show that:

e and π are irrational numbers;

Proof.

For a), For any positive integer N we have
e=n=01n!eN=n=0N1n!=pNqN<eeeN<e(N+1)!,qN1N!
Assume that e is rational, then we can write e=pq for some p,qN with q>0. Choose N sufficiently large so that N>p, then we get e<N+1q thus 1q>eN+1. We have
eeN=pqpNqN=pqNqpNqqN1qqN1qN!e(N+1)!
which is a contradiction. So e must be irrational.

2.limnk=1nj=1nm=1narctanjnarctank2n2kn5+kj2n3m3(lnmlnn)3(ln(n+j)lnn).

Solution

limnk=1nj=1nm=1narctanjnarctank2n2m3(lnmlnn)3[ln(j+n)lnn]kn5+kj2n3

=limn1n3k=1nj=1nm=1narctanjnarctank2n2(mn)3(lnmn)3[ln(1+jn)]kn(1+j2n2)

=01arctanz2zdz01(ylny)3dy01arctanxln(1+x)1+x2dx

=G201(ylny)3dy01arctanxln(1+x)1+x2dx

=G2312801arctanxln(1+x)1+x2dx

let
I3=01arctanxln(1+x)1+x2dx

I3=0π4xln(1+tanx)dx=0π4xln(cosx+sinx)dx0π4xln(cosx)dx

=0π4xln(2sin(x+π4))dxπ4π2(π2x)ln(sinx)dx

=π2ln264x3π4π4π2lnsinxdx

=π2ln264+2ψ13π4ψ2.
Try to compute ψ1,ψ2,

lnsinx=ln2n=1cos(2nx)n,0<x<π

ψ1=π4π2xlnsinxdx=π4π2x[ln2n=1cos(2nx)n]dx

=3π2ln232n=1nπsin(nπ)+cos(nπ)(nπ2)sin(nπ2)cos(nπ2)4n3
=3π2ln23214n=1(1)nn3+π8n=1(1)n1(2n1)2132n=1(1)nn3

=21128ζ(3)π8π2ln264.

ψ2=G2πln24 the answer is
3G256(2164ζ(3)π8G+π2ln264).

3.
Find an explicit conformal transformation of an open set U={|z|>
1}(,1] to the unit disc.

Proof.
We will construct the mapping in several steps(*≧ω≦)

  1. The mapping w=1z maps U onto D1[0,1]

  2. w=w maps D1[0,1] onto {z||z∣<1,Im(z)>0}

  3. The mapping w=w1w+1 maps {z||z∣<1,Im(z)>0} onto
    {zRe(z)>0,Im(z)>0}

  4. u=w2maps{zRe(z)>0,Im(z)>0} onto {zIm(z)>0}

  1. v=uiu+i maps the upper half plane onto the unit disc.

  2. Composition of the mappings 1)-4) is u=(1211z+1)2 Its composition with 5 ) gives the desired mapping.

投稿日:20201113
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

Math-X
Math-X
12
598
Math website math-x.linkpc.net

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中