超幾何関数のあのどっから来たのかよく分からない変換公式がどうやって導かれたのか?そのモヤモヤの解決に少しでもつなげるために本稿を書きましたのだ!
すっごくなっがーい記事だけど、ずんだもちでも食べながらゆっくり咀嚼して読んでくれると嬉しいのだ!
\begin{equation}
\frac{d^{2}y}{dx^{2}}+[\frac{1-\alpha-\alpha^{'}}{x-a}+\frac{1-\beta-\beta^{'}}{x-b}+\frac{1-\gamma-\gamma^{'}}{x-c}]\frac{dy}{dx}+[\frac{\alpha\alpha^{'}\left(a-b\right)\left(a-c\right)}{x-a}+\frac{\beta\beta^{'}\left(b-c\right)\left(b-1\right)}{x-b}+\frac{\gamma\gamma^{'}\left(c-a\right)\left(c-b\right)}{x-c}]\frac{y}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}=0
\end{equation}
ここで、$\alpha+\alpha^{'}+\beta+\beta^{'}+\gamma+\gamma^{'}=1$。
また、この微分方程式の解を次のように書きRiemannのP関数というのだ!
\begin{equation}
y=P\begin{Bmatrix}a&b&c\\\alpha&\beta&\gamma& x\\\alpha^{'}&\beta^{'}&\gamma^{'}\end{Bmatrix}
\end{equation}
\begin{equation}
\frac{d^{2}y}{dx^{2}}+[\frac{1-\alpha-\alpha^{'}}{x-a}+\frac{1-\beta-\beta^{'}}{x-b}+\frac{1-\gamma-\gamma^{'}}{x-c}]\frac{dy}{dx}+[\frac{\alpha\alpha^{'}\left(a-b\right)\left(a-c\right)}{x-a}+\frac{\beta\beta^{'}\left(b-c\right)\left(b-a\right)}{x-b}+\frac{\gamma\gamma^{'}\left(c-a\right)\left(c-b\right)}{x-c}]\frac{y}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}=0
\end{equation}
の$x=a$近傍の級数解を$u=\sum_{n=0}^{\infty}a_{n}\left(x-a\right)^{n+s}$とおくのだ。また下記のことが成り立つので、RiemannのP微分方程式に$\left(x-a\right)^{2}$を両辺にかけて$\left(x-a\right)^{s}$の係数を考えるのだ。\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{du}{dx}=\sum_{n=0}^{\infty}\left(n+s\right)\left(x-a\right)^{n+s}\\
\frac{d^{2}u}{dx^{2}}=\sum_{n=0}^{\infty}\left(n+s\right)\left(n+s-1\right)\left(x-a\right)^{n+s}
\end{array}
\right.
\end{eqnarray}
\begin{equation}
s\left(s-1\right)+\left(1-\alpha-\alpha^{'}\right)s+\alpha\alpha^{'}=\left(s-\alpha\right)\left(s-\alpha^{'}\right)\\=0
\end{equation}
このことから、$x=a$での特性指数は$\alpha,\alpha^{'}$であることが分かる。$x=b,x=c$でも同様なのだ。このことからRiemannのP関数は確定特異点と特性指数を書いたものだとわかるのだ。
$x^{'}=\frac{rx+s}{px+q}$とすると次のように書き直せるのだ。
\begin{eqnarray}
x^{'}&=&\frac{\frac{r}{p}\left(px+q\right)+s-\frac{qr}{p}}{px+q}\\
&=&\frac{r}{p}+\frac{s-\frac{qr}{p}}{px+q}\\
&=&\frac{r}{p}+\frac{\frac{1}{p}\left(s-\frac{qr}{p}\right)}{x+\frac{q}{p}}
\end{eqnarray}
$x^{'}$で行っていることを細かく分けるのだ。
\begin{equation}
\left(\frac{x-a}{x-b}\right)^{\mu}\left(\frac{x-c}{x-b}\right)^{\nu}P\begin{Bmatrix}a&b&c\\\alpha&\beta&\gamma&x\\\alpha^{'}&\beta^{'}&\gamma^{'}\end{Bmatrix}
=P\begin{Bmatrix}a&b&c\\\alpha+\mu&\beta-\mu-\nu&\gamma+\nu&x\\\alpha^{'}+\mu&\beta^{'}-\mu-\nu&\gamma^{'}+\nu\end{Bmatrix}\end{equation}
が成り立つ。
実際、$x=a$での近傍の解で特性指数$\alpha$の解を$u=\sum_{n=0}^{\infty}a_{n}\left(x-a\right)^{n+\alpha}$とおくのだ。また$v=\left(\frac{x-a}{x-b}\right)^{\mu}\left(\frac{x-c}{x-b}\right)^{\nu}u$と書くのだ。
\begin{eqnarray}
v&=&\left(\frac{x-a}{x-b}\right)^{\mu}\left(\frac{x-c}{x-b}\right)^{\nu}\sum_{n=0}^{\infty}a_{n}\left(x-a\right)^{n+\alpha}\\
&=&\frac{\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\sum_{n=0}^{\infty}a_{n}\left(x-a\right)^{n+\alpha+\mu}
\end{eqnarray}
また次の様に書けるのだ。
\begin{eqnarray}
\frac{\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}&=&\frac{\left(a-c\right)^{\nu}}{\left(a-b\right)^{\mu+\nu}}\sum_{m=0}^{\infty}\begin{pmatrix}\nu\\m\end{pmatrix}\left(x-a\right)^{m}\sum_{n=0}^{\infty}\left(-1\right)^{n}\left(x-a\right)^{n}\\
&=&\frac{\left(a-c\right)^{\nu}}{\left(a-b\right)^{\mu+\nu}}\sum_{m=0}^{\infty}\left(x-a\right)^{m}\sum_{n=0}^{m}\left(-1\right)^{n}\begin{pmatrix}\nu\\m-n\end{pmatrix}
\end{eqnarray}このことから、$v$がRiemannのP微分方程式とすれば、$x=a$の近傍で、特性指数$\alpha+\mu$の解であることが分かるのだ。
同様にして、$v$がRiemannのP微分方程式であるとすれば
\begin{equation}
v=P\begin{Bmatrix}a&b&c\\\alpha+\mu&\beta-\mu-\nu&\gamma+\nu&x\\\alpha^{'}+\mu&\beta^{'}-\mu-\nu&\gamma^{'}+\nu\end{Bmatrix}
\end{equation}
また$v$は次のRiemannのP微分方程式を満たすことを示すのだ。
\begin{equation}
\frac{d^{2}v}{dx^{2}}+[\frac{1-\alpha-\alpha^{'}-2\mu}{x-a}+\frac{1-\beta-\beta^{'}+2\left(\mu+\nu\right)}{x-b}+\frac{1-\gamma-\gamma^{'}-2\nu}{x-c}]\frac{dv}{dx}+[\frac{\left(\alpha+\mu\right)\left(\alpha^{'}+\mu\right)\left(a-b\right)\left(a-c\right)}{x-a}+\frac{\left(\beta-\mu-\nu\right)\left(\beta^{'}-\mu-\nu\right)\left(b-c\right)\left(b-1\right)}{x-b}+\frac{\left(\gamma+\nu\right)\left(\gamma^{'}+\nu\right)\left(c-a\right)\left(c-b\right)}{x-c}]\frac{v}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}=0
\end{equation}
これを満たすことを確認するために下記の事実を用いるのだ。
\begin{eqnarray}
\frac{dv}{dx}&=&\frac{d}{dx}\left(\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}u\right)\\
&=&\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{du}{dx}+\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)u\right)
\end{eqnarray}
\begin{eqnarray}
\frac{d^{2}v}{dx^{2}}&=&\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{d^{2}u}{dx^{2}}+\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)\frac{du}{dx}\right)\\
&+&\mu\frac{\left(x-a\right)^{\mu-1}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{du}{dx}+\left(\frac{\mu-1}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)u\right)\\
&-&\left(\mu+\nu\right)\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu+1}}\left(\frac{du}{dx}+\left(\frac{\mu}{x-a}-\frac{\mu+\nu+1}{x-b}+\frac{\nu}{x-c}\right)u\right)\\
&+&\nu\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu-1}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{du}{dx}+\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu-1}{x-c}\right)u\right)\\
&=&\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\frac{d^{2}u}{dx^{2}}\\
&+&2\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)\frac{du}{dx}\\
&+&\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{\mu\left(\mu-1\right)}{\left(x-a\right)^{2}}-\frac{\mu\left(\mu+\nu\right)}{\left(x-a\right)\left(x-b\right)}+\frac{\mu\nu}{\left(x-a\right)\left(x-c\right)}-\frac{\mu\left(\mu+\nu\right)}{\left(x-a\right)\left(x-b\right)}+\frac{\left(\mu+\nu\right)\left(\mu+\nu+1\right)}{\left(x-b\right)^{2}}-\frac{\nu\left(\mu+\nu\right)}{\left(x-b\right)\left(x-c\right)}+\frac{\mu\nu}{\left(x-a\right)\left(x-c\right)}-\frac{\nu\left(\mu+\nu\right)}{\left(x-b\right)\left(x-c\right)}+\frac{\nu\left(\nu-1\right)}{\left(x-c\right)^{2}}\right)u\\
&=&\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\frac{d^{2}u}{dx^{2}}\\
&+&2\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)\frac{du}{dx}\\
&+&\frac{\left(x-a\right)^{\mu}\left(x-c\right)^{\nu}}{\left(x-b\right)^{\mu+\nu}}\left(\frac{\mu\left(\mu-1\right)}{\left(x-a\right)^{2}}+\frac{\left(\mu+\nu\right)\left(\mu+\nu+1\right)}{\left(x-b\right)^{2}}+\frac{\nu\left(\nu-1\right)}{\left(x-c\right)^{2}}-2\left(\frac{\mu\left(\mu+\nu\right)}{\left(x-a\right)\left(x-b\right)}-\frac{\mu\nu}{\left(x-a\right)\left(x-c\right)}+\frac{\nu\left(\mu+\nu\right)}{\left(x-b\right)\left(x-c\right)}\right)\right)u
\end{eqnarray}
これらの事実を用いてRiemannのP微分方程式に代入すると下記の様になるのだ。
\begin{eqnarray}
&&\frac{d^{2}u}{dx^{2}}\\
&&+2\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)\frac{du}{dx}\\
&&+\left(\frac{\mu\left(\mu-1\right)}{\left(x-a\right)^{2}}+\frac{\left(\mu+\nu\right)\left(\mu+\nu+1\right)}{\left(x-b\right)^{2}}+\frac{\nu\left(\nu-1\right)}{\left(x-c\right)^{2}}-2\left(\frac{\mu\left(\mu+\nu\right)}{\left(x-a\right)\left(x-b\right)}-\frac{\mu\nu}{\left(x-a\right)\left(x-c\right)}+\frac{\nu\left(\mu+\nu\right)}{\left(x-b\right)\left(x-c\right)}\right)\right)u\\
&&+[\frac{1-\alpha-\alpha^{'}-2\mu}{x-a}+\frac{1-\beta-\beta^{'}+2\left(\mu+\nu\right)}{x-b}+\frac{1-\gamma-\gamma^{'}-2\nu}{x-c}]\\
&&\times \left(\frac{du}{dx}+\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)u\right)\\
&&+[\frac{\left(\alpha+\mu\right)\left(\alpha^{'}+\mu\right)\left(a-b\right)\left(a-c\right)}{x-a}+\frac{\left(\beta-\mu-\nu\right)\left(\beta^{'}-\mu-\nu\right)\left(b-c\right)\left(b-1\right)}{x-b}+\frac{\left(\gamma+\nu\right)\left(\gamma^{'}+\nu\right)\left(c-a\right)\left(c-b\right)}{x-c}]\frac{u}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}\\
&&=\frac{d^{2}u}{dx^{2}}\\
&&+[\frac{1-\alpha-\alpha^{'}}{x-a}+\frac{1-\beta-\beta^{'}}{x-b}+\frac{1-\gamma-\gamma^{'}}{x-c}]\frac{du}{dx}\\
&&+\left(\frac{\mu\left(\mu-1\right)}{\left(x-a\right)^{2}}+\frac{\left(\mu+\nu\right)\left(\mu+\nu+1\right)}{\left(x-b\right)^{2}}+\frac{\nu\left(\nu-1\right)}{\left(x-c\right)^{2}}-2\left(\frac{\mu\left(\mu+\nu\right)}{\left(x-a\right)\left(x-b\right)}-\frac{\mu\nu}{\left(x-a\right)\left(x-c\right)}+\frac{\nu\left(\mu+\nu\right)}{\left(x-b\right)\left(x-c\right)}\right)\right)u\\
&&+[\frac{1-\alpha-\alpha^{'}-2\mu}{x-a}+\frac{1-\beta-\beta^{'}+2\left(\mu+\nu\right)}{x-b}+\frac{1-\gamma-\gamma^{'}-2\nu}{x-c}]\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)u\\
&&+[\frac{\left(\alpha+\mu\right)\left(\alpha^{'}+\mu\right)\left(a-b\right)\left(a-c\right)}{x-a}+\frac{\left(\beta-\mu-\nu\right)\left(\beta^{'}-\mu-\nu\right)\left(b-c\right)\left(b-1\right)}{x-b}+\frac{\left(\gamma+\nu\right)\left(\gamma^{'}+\nu\right)\left(c-a\right)\left(c-b\right)}{x-c}]\frac{u}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}
\end{eqnarray}
よって次の事を示せばよいのだ。
\begin{eqnarray}
&&\left(\frac{\mu\left(\mu-1\right)}{\left(x-a\right)^{2}}+\frac{\left(\mu+\nu\right)\left(\mu+\nu+1\right)}{\left(x-b\right)^{2}}+\frac{\nu\left(\nu-1\right)}{\left(x-c\right)^{2}}-2\left(\frac{\mu\left(\mu+\nu\right)}{\left(x-a\right)\left(x-b\right)}-\frac{\mu\nu}{\left(x-a\right)\left(x-c\right)}+\frac{\nu\left(\mu+\nu\right)}{\left(x-b\right)\left(x-c\right)}\right)\right)u\\
&&+[\frac{1-\alpha-\alpha^{'}-2\mu}{x-a}+\frac{1-\beta-\beta^{'}+2\left(\mu+\nu\right)}{x-b}+\frac{1-\gamma-\gamma^{'}-2\nu}{x-c}]\left(\frac{\mu}{x-a}-\frac{\mu+\nu}{x-b}+\frac{\nu}{x-c}\right)u\\
&&+[\frac{\mu\left(\alpha+\alpha^{'}+\mu\right)\left(a-b\right)\left(a-c\right)}{x-a}+\frac{-\left(\mu+\nu\right)\left(\beta+\beta^{'}-\mu-\nu\right)\left(b-c\right)\left(b-a\right)}{x-b}+\frac{\nu\left(\gamma+\gamma^{'}+\nu\right)\left(c-a\right)\left(c-b\right)}{x-c}]\frac{u}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}\\
&&=0
\end{eqnarray}
\begin{eqnarray}
&&\mu\left(\mu-1\right)\left(x-b\right)^{2}\left(x-c\right)^{2}\\
&&+\left(\mu+\nu\right)\left(\mu+\nu+1\right)\left(x-a\right)^{2}\left(x-c\right)^{2}\\
&&+\nu\left(\nu-1\right)\left(x-a\right)^{2}\left(x-b\right)^{2}\\
&&-2\left(\mu\left(\mu+\nu\right)\left(x-c\right)-\mu\nu\left(x-b\right)+\nu\left(\mu+\nu\right)\left(x-a\right)\right)\left(x-a\right)\left(x-b\right)\left(x-c\right)\\
&&+\left(\left(1-\alpha-\alpha^{'}-2\mu\right)\left(x-b\right)\left(x-c\right)+\left(1-\beta-\beta^{'}+2\mu+2\nu\right)\left(x-a\right)\left(x-c\right)+\left(1-\gamma-\gamma^{'}-2\nu\right)\left(x-a\right)\left(x-b\right)\right)\\
&&\times \left(\left(\mu a-\left(\mu+\nu\right)b+\nu c\right)x+\mu bc -\left(\mu+\nu\right)ca+\nu ab\right)\\
&&+\mu\left(\alpha+\alpha^{'}+\mu\right)\left(a-b\right)\left(a-c\right)\left(x-b\right)\left(x-c\right)\\
&&-\left(\mu+\nu\right)\left(\beta+\beta^{'}-\mu-\nu\right)\left(b-c\right)\left(b-a\right)\left(x-a\right)\left(x-c\right)\\
&&+\nu\left(\gamma+\gamma^{'}+\nu\right)\left(c-a\right)\left(c-b\right)\left(x-a\right)\left(x-b\right)\\
&&=0
\end{eqnarray}
白状するとこれを手計算で行うのはあきらめたのだ(´;ω;`)。
ただ、どうやってこの式が成り立つかを確認したかは伝えておくのだ。それは下記の様なのだ。
from sympy import symbols, expand, collect
# 定数と変数の定義
x, a, b, c, mu, nu = symbols('x a b c mu nu')
alpha, alpha, beta, beta, gamma, gamma_ = symbols('alpha alpha_ beta beta_ gamma gamma')
# 与えられた式
expr = (mu(mu-1)(x-b)2*(x-c)2
+ (mu+nu)(mu+nu+1)(x-a)2*(x-c)2
+ nu(nu-1)(x-a)2*(x-b)2
- 2(mu(mu+nu)(x-c) - munu(x-b) + nu(mu+nu)(x-a))(x-a)(x-b)(x-c)
+ ((1-alpha-alpha - 2mu)(x-b)(x-c)
+ (1-beta-beta_ + 2mu + 2nu)(x-a)(x-c)
+ (1-gamma-gamma_ - 2nu)(x-a)(x-b))
* ((mua - (mu+nu)b + nuc)x + mubc - (mu+nu)ca + nuab)
+ mu(alpha + alpha_ + mu)(a-b)(a-c)(x-b)(x-c)
- (mu+nu)(beta + beta_ - mu - nu)(b-c)(b-a)(x-a)(x-c)
+ nu(gamma + gamma_ + nu)(c-a)(c-b)(x-a)*(x-b))
# 展開と整理
expanded_expr = expand(expr)
# xの多項式として整理
polynomial = collect(expanded_expr, x)
print(polynomial)
皆が大好きなGauss超幾何微分方程式は次のようなのだ!
\begin{equation} z\left(1-z\right)\frac{d^{2}u}{dz^{2}}+\{c-\left(a+b+1\right)z\}\frac{du}{dx}-abu=0 \end{equation}
実はこの超幾何微分方程式は実はRiemannの微分方程式の一つなのだ!
実際、RiemannのP微分方程式を下記の様に計算していくことで分かるのだ。
\begin{eqnarray}
&&\frac{d^{2}u}{dz^{2}}+\left(\frac{1-\alpha-\alpha^{'}}{z-a}+\frac{1-\beta-\beta^{'}}{z-b}+\frac{1-\gamma-\gamma^{'}}{z-c}\right)\frac{du}{dz}+\left(\frac{\alpha\alpha^{'}\left(a-b\right)\left(a-c\right)}{z-a}+\frac{\beta\beta^{'}\left(b-c\right)\left(b-a\right)}{z-b}+\frac{\gamma\gamma^{'}\left(c-a\right)\left(c-b\right)}{z-c}\right)\frac{u}{\left(z-a\right)\left(z-b\right)\left(z-c\right)}\\
&&\rightarrow\frac{d^{2}u}{dz^{2}}+\left(\frac{1-\alpha-\alpha^{'}}{z-a}+\frac{1-\beta-\beta^{'}}{z-b}\right)\frac{du}{dz}+\left(\frac{\alpha\alpha^{'}\left(a-b\right)}{z-a}+\frac{\beta\beta^{'}\left(b-a\right)}{z-b}+\gamma \gamma^{'}\right)\frac{u}{\left(z-a\right)\left(z-b\right)}\\
&&\rightarrow \frac{d^{2}u}{dz^{2}}+\left(\frac{1-\alpha-\alpha^{'}}{z}+\frac{1-\beta-\beta^{'}}{z-1}\right)\frac{du}{dz}+\left(-\frac{\alpha\alpha^{'}}{z}+\frac{\beta\beta^{'}}{z-1}+\gamma\gamma^{'}\right)\frac{u}{z\left(z-1\right)}
\end{eqnarray}
また,超幾何微分方程式の両辺を$z\left(1-z\right)$で割る事で下記のように書けるのだ。
\begin{eqnarray}
\frac{d^{2}u}{dz^{2}}+\left(\frac{c}{z}+\frac{a+b-c+1}{z-1}\right)\frac{du}{dz}+\frac{ab}{z\left(z-1\right)}u=0
\end{eqnarray}
これらを比較すると超幾何微分方程式の解が次の様に書けることが分かるのだ。
\begin{eqnarray}
u&=&P\begin{Bmatrix}0&1&\infty\\0&0&a&z\\1-c&c-a-b&b \end{Bmatrix}\\
&=&F\left(a,b;c;z\right)
\end{eqnarray}
$T\left(z\right)=\frac{rz+s}{pz+q}$とすると
\begin{equation}
v\left(z\right)=u\left(T\left(z\right)\right)=P\begin{Bmatrix}\frac{s}{q}&\frac{r+s}{p+q}&\frac{r}{p}\\0&0&a&T\left(z\right)\\1-c&c-a-b&b\end{Bmatrix}
\end{equation}
\begin{equation}
w\left(z\right)=\frac{\left(z-\frac{s}{q}\right)^{\mu}\left(z-\frac{r}{p}\right)^{\nu}}{\left(z-\frac{r+s}{p+q}\right)^{\mu+\nu}}v\left(z\right)=P\begin{Bmatrix}\frac{s}{q}&\frac{r+s}{p+q}&\frac{r}{p}\\\mu&-\mu-\nu&a+\nu&T\left(z\right)\\1-c+\mu&c-a-b-\mu-nu&b+\nu\end{Bmatrix}
\end{equation}
\begin{equation}
\frac{\left(z-\frac{s}{q}\right)^{\mu}\left(z-\frac{r}{p}\right)^{\nu}}{\left(z-\frac{r+s}{p+q}\right)^{\mu+\nu}}F\left(a,b;c;\frac{rz+s}{pz+q}\right)=P\begin{Bmatrix}\frac{s}{q}&\frac{r+s}{p+q}&\frac{r}{p}\\\mu&-\mu-\nu&a+\nu&T\left(z\right)\\1-c+\mu&c-a-b-\mu-\nu&b+\nu\end{Bmatrix}
\end{equation}
ここで次の様に定めると
\begin{eqnarray}
\left\{
\begin{array}{l}
\mu=c-1\\
\nu=-b
\end{array}
\right.
\end{eqnarray}
次のような結果が得られるのだ。
\begin{eqnarray}
\frac{\left(z-\frac{s}{q}\right)^{c-1}\left(z-\frac{r}{p}\right)^{-b}}{\left(z-\frac{r+s}{p+q}\right)^{c-b-1}}F\left(a,b;c;\frac{rz+s}{pz+q}\right)=P\begin{Bmatrix}\frac{s}{q}&\frac{r+s}{p+q}&\frac{r}{p}\\c-1&b-c+1&a-b&\frac{rz+s}{pz+q}\\0&1-a&0\end{Bmatrix}
\end{eqnarray}
ここで次の事実を用いるのだ。
$T\left(z\right)=\frac{rz+s}{pz+q}$とし、$T\left(a\right)=0,T\left(b\right)=1,T\left(c\right)=\infty$となるようになる$p,q,r,s$は次の様に書けるのだ。
\begin{eqnarray}
\left\{
\begin{array}{l}
p=\frac{b-a}{b-c}\\
q=-\frac{b-a}{b-c}c\\
r=1\\
s=-a\\
\end{array}
\right.
\end{eqnarray}
そこで、$a=\frac{s}{q},b=\frac{r}{p},c=\frac{r+s}{p+q}$とおき、次のような変換を考えるのだ。
\begin{eqnarray}
U\left(z\right)=\frac{\left(b-c\right)\left(z-a\right)}{\left(b-a\right)\left(z+c\right)}&=&\frac{\left(\frac{r}{p}-\frac{r+s}{p+q}\right)\left(z-\frac{s}{q}\right)}{\left(\frac{r}{p}-\frac{s}{q}\right)\left(z-\frac{r+s}{p+q}\right)}\\
&=&\frac{p\left(qr-ps\right)\left(qz-s\right)}{\left(qr-ps\right)\left(\left(p+q\right)z-\left(r+s\right)\right)}\\
&=&\frac{p\left(qz-s\right)}{\left(p+q\right)z-\left(r+s\right)}
\end{eqnarray}
この$U$を用いると最終的に次のような結論を得るのだ。
\begin{eqnarray}
\frac{\left(U\left(z\right)-\frac{s}{q}\right)^{c-1}\left(U\left(z\right)-\frac{r}{p}\right)^{-b}}{\left(U\left(z\right)-\frac{r+s}{p+q}\right)^{c-b-1}}F\left(a,b;,c;U\left(\frac{rz+s}{pz+q}\right)\right)&=&P\begin{Bmatrix}0&1&\infty\\0&0&1-a&U\left(\frac{rz+s}{pz+q}\right)\\c-1&a-b&b-c+1\end{Bmatrix}\\
&=&F(1-a,b-c+1;2-c;U\left(\frac{rz+s}{pz+q}\right))
\end{eqnarray}
長くなったのでまとめるのだ!