0

奈良素敵大学模試(自作模試)大問2

89
0

問題

以下の漸化式で与えられる数列{an},{bn}を考える。ただし、nは非負整数であるとし、{an}の初項はa0=1とする。
{an+1=k=0nakankbn+1=k=0n(k+1)akank
(1)bnanで表わせ。
(2)an+1=2(2n+1)n+2anを証明せよ。
(3)それぞれの数列の一般項an,bnを求めよ。
(4)limnannを求めよ。

解説は こちら

投稿日:2020116
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

Tokyo Tech 22B理学院 作問サークル(非公式)所属。 主に高校数学の自作問題を投稿します。 まれに問題の解答例、解説を書くこともあります。

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中