$$$$
今回は,神鳥奈紗さんの積分問題09を解いたので,その解答を書こうと思います.
問題
\begin{align*}
\int_0^{\frac{\pi}{2}} \frac{\ln \cos x}{\tan x} dx ~=~?
\end{align*}
解答
\begin{align*}
&\int_0^{\frac{\pi}{2}} \frac{\ln \cos x}{\tan x} dx \\
&= \int_0^{\frac{\pi}{2}} \frac{\cos x \ln \cos x}{\sin x } dx \\
&= \int_0^{\frac{\pi}{2}} \frac{1}{\sin x}\left. \frac{\partial}{\partial y} \cos^y x \right|_{y=1} dx\\
&= \frac12 \lim_{x\to 0}\left. \frac{d}{dy} B\left(x, \frac{y+1}{2}\right) \right|_{y=1} \\
&= \frac12 \lim_{x\to 0} \frac12 \left. B\left(x, \frac{y+1}{2}\right)\left(\psi\left(\frac{y+1}{2}\right) - \psi\left(x+\frac{y+1}{2}\right)\right) \right|_{y=1} \\
&= \frac14 \lim_{x\to 0} B(x, 1)(\psi(1) - \psi(x + 1))\\
&= \frac14 \lim_{x\to 0} \frac{x\Gamma(x)}{\Gamma(x+1)} \frac{\psi(1) - \psi(x+1)}{x} \\
&= -\frac14 \lim_{x\to 0} \frac{\gamma + \psi(x+1)}{x} \\
&= -\frac14 \lim_{x\to 0} \psi^{(1)}(x+1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\textrm{L'Hôpital's rule})\\
&= -\frac14 \psi^{(1)} (1) \\
&= -\frac14 \cdot \frac{\pi^2}{6} \\
&= -\frac{\pi^2}{24}
\end{align*}