6

一般化に挑戦

181
0

はじめに

この記事では級数や積分の一般化について説明していきます。作問と同様に少しでも多くの人に一般化に興味を持ててもらえたらいいな、と思い作成することにしました。

本題

一般化ですが、多くが一般化されていない式の定数部分を文字にして計算するという方法です。試しに次の簡単な積分を例にして考えてみましょう。(原案: 白茶 さん)

0π211+cos2xdx

解いてみます。

0π211+cos2xdx=0π211+1cos2xdxcos2x=0π212+tan2xdxcos2x=012+t2dt          (t=tanx)=0π212(1+tan2θ)2cos2θdθ          (t=2tanθ)=120π2dθ=π22

解けましたね。今回はこの積分の一般化を考えてみましょう。この解法をベースにして考えた時にどこの定数なら変えても解けそうか、を考えてみると楽かもしれません。ここでは分母の1aに変えても同じ解法で解けそうなのでそれを解いてみます。

0π21a+cos2xdx=0π211+acos2xdxcos2x=0π21a+1+atan2xdxcos2x=011+a+at2dt          (t=tanx)=1a011+aa+t2dt=1a0π211+aa(1+tan2θ)1+aadθcos2θ          (t=1+aatanθ)=1a(1+a)0π2dθ=π2a(1+a)

よって、

0π21a+cos2xdx=π2a(1+a)

がわかりました。一般化が完成しましたね。

ちなみにですが、この一般化がわかったことにより こちら の記事にある問題が少しの工夫で解けるようになります。

おわりに

今回は一般化に挑戦というタイトルで記事を書いてみました。簡単な一般化でも使い方によってはかなり強力になる時があります。是非チャレンジしてみてください。

投稿日:20201118
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

神鳥奈紗
神鳥奈紗
494
16206
遭難者です.高専1年です.MZV,級数,積分をメインにやっています.

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中
  1. はじめに
  2. 本題
  3. おわりに