この記事では$\displaystyle\cos\frac{2\pi}{17}$の計算をします。かなり計算量が多いので計算好きの方は読んでみてください。
$\displaystyle\zeta=e^{\frac{2\pi i}{17}}$とおきます。
すると、$\zeta^{17}=1$なので、$\zeta+\zeta^2+...+\zeta^{16}=-1$となります。
ここで、$3$は$\mod17$における原始根となっているので$\zeta^{3^k}$の形に並び替えます。
$\zeta+\zeta^3+\zeta^9+\zeta^{10}+\zeta^{13}+\zeta^5+\zeta^{15}+\zeta^{11} \\+\zeta^{16}+\zeta^{14}+\zeta^8+\zeta^7+\zeta^4+\zeta^{12}+\zeta^2+\zeta^6\\=-1$
これを奇数番目と偶数番目に分けて、
$\zeta+\zeta^9+\zeta^{13}+\zeta^{15}+\zeta^{16}+\zeta^8+\zeta^4+\zeta^2=\alpha$
$\zeta^3+\zeta^{10}+\zeta^5+\zeta^{11}+\zeta^{14}+\zeta^7+\zeta^{12}+\zeta^6=\beta$
と置きます。
すると、$\alpha+\beta=-1$であり、
$\alpha\beta
\\=(\zeta+\zeta^9+\zeta^{13}+\zeta^{15}+\zeta^{16}+\zeta^8+\zeta^4+\zeta^2)
\\(\zeta^3+\zeta^{10}+\zeta^5+\zeta^{11}+\zeta^{14}+\zeta^7+\zeta^{12}+\zeta^6)
\\=\zeta^4+\zeta^{11}+\zeta^6+\zeta^{12}+\zeta^{15}+\zeta^8+\zeta^{13}+\zeta^7
\\+\zeta^{12}+\zeta^2+\zeta^{14}+\zeta^3+\zeta^6+\zeta^{16}+\zeta^4+\zeta^{15}
\\+\zeta^{16}+\zeta^6+\zeta+\zeta^7+\zeta^{10}+\zeta^3+\zeta^8+\zeta^2
\\+\zeta+\zeta^8+\zeta^3+\zeta^9+\zeta^{12}+\zeta^5+\zeta^{10}+\zeta^4
\\+\zeta^2+\zeta^9+\zeta^4+\zeta^{10}+\zeta^{13}+\zeta^6+\zeta^{11}+\zeta^5
\\+\zeta^{11}+\zeta+\zeta^{13}+\zeta^2+\zeta^5+\zeta^{15}+\zeta^3+\zeta^{14}
\\+\zeta^7+\zeta^{14}+\zeta^9+\zeta^{15}+\zeta+\zeta^{11}+\zeta^{16}+\zeta^{10}
\\+\zeta^5+\zeta^{12}+\zeta^7+\zeta^{13}+\zeta^{16}+\zeta^9+\zeta^{14}+\zeta^8
\\=4(\zeta+\zeta^2+...+\zeta^{16})=-4$
従って、$\displaystyle\alpha,\beta=\frac{-1\pm\sqrt{17}}{2}$
となるが、$\displaystyle\alpha=2\left(\cos\frac{2\pi}{17}+\cos\frac{4\pi}{17}+\cos\frac{8\pi}{17}+\cos\frac{16\pi}{17}\right)>0$より、$\displaystyle\alpha=\frac{-1+\sqrt{17}}{2},\beta=\frac{-1-\sqrt{17}}{2}$です。
$\alpha=\zeta+\zeta^9+\zeta^{13}+\zeta^{15}+\zeta^{16}+\zeta^8+\zeta^4+\zeta^2$を奇数番目と偶数番目に分けて
$\alpha_1=\zeta+\zeta^{13}+\zeta^{16}+\zeta^4$
$\alpha_2=\zeta^9+\zeta^{15}+\zeta^8+\zeta^2$
とします。
$\alpha_1+\alpha_2=\alpha$
$\alpha_1\alpha_2
\\=(\zeta+\zeta^{13}+\zeta^{16}+\zeta^4)(\zeta^9+\zeta^{15}+\zeta^8+\zeta^2)
\\=\zeta^{10}+\zeta^{16}+\zeta^9+\zeta^3+\zeta^5+\zeta^{11}+\zeta^4+\zeta^{15}
\\+\zeta^8+\zeta^{14}+\zeta^7+\zeta+\zeta^{13}+\zeta^2+\zeta^{12}+\zeta^6
\\=-1$
従って、$\displaystyle\alpha_1,\alpha_2=\frac{\alpha\pm\sqrt{\alpha^2+4}}{2}$
また、$\displaystyle\alpha_1=2\left(\cos\frac{2\pi}{17}+\cos\frac{8\pi}{17}\right)>0$より、$\displaystyle\alpha_1=\frac{\alpha+\sqrt{\alpha^2+4}}{2},\alpha_2=\frac{\alpha-\sqrt{\alpha^2+4}}{2}$
$\beta=\zeta^3+\zeta^{10}+\zeta^5+\zeta^{11}+\zeta^{14}+\zeta^7+\zeta^{12}+\zeta^6$も同様に奇数番目と偶数番目に分けて
$\beta_1=\zeta^3+\zeta^5+\zeta^{14}+\zeta^{12}$
$\beta_2=\zeta^{10}+\zeta^{11}+\zeta^7+\zeta^6$
とします。
$\beta_1+\beta_2=\beta$
$\beta_1\beta_2
\\=(\zeta^3+\zeta^5+\zeta^{14}+\zeta^{12})(\zeta^{10}+\zeta^{11}+\zeta^7+\zeta^6)
\\=\zeta^{13}+\zeta^{14}+\zeta^{10}+\zeta^9+\zeta^{15}+\zeta^{16}+\zeta^{12}+\zeta^{11}
\\+\zeta^7+\zeta^8+\zeta^4+\zeta^3+\zeta^5+\zeta^6+\zeta^2+\zeta
\\=-1$
$\displaystyle\beta_1=2\left(\cos\frac{6\pi}{17}+\cos\frac{10\pi}{17}\right)>0$
より、
$\displaystyle\beta_1=\frac{\beta+\sqrt{\beta^2+4}}{2},\beta_2=\frac{\beta-\sqrt{\beta^2+4}}{2}$
そして、$\alpha_1=\zeta+\zeta^{13}+\zeta^{16}+\zeta^4$も奇数番目と偶数番目に分けてみます。
$(\zeta+\zeta^{16})+(\zeta^{13}+\zeta^4)=\alpha_1$
$(\zeta+\zeta^{16})(\zeta^{13}+\zeta^4)
=\zeta^{14}+\zeta^5+\zeta^{12}+\zeta^3=\beta_1$
ここで、$\displaystyle\zeta+\zeta^{16}=2\cos\frac{2\pi}{17},\zeta^{13}+\zeta^4=2\cos\frac{8\pi}{17}$
より、$\zeta+\zeta^{16}>\zeta^{13}+\zeta^4$となるので、
$\displaystyle2\cos\frac{2\pi}{17}=\zeta+\zeta^{16}
\\\displaystyle=\frac{\alpha_1+\sqrt{{\alpha_1}^2-4\beta_1}}{2}$
従って、$\displaystyle\cos\frac{2\pi}{17}=\frac{\alpha_1+\sqrt{{\alpha_1}^2-4\beta_1}}{4}$と求まりましたね。
仕上げに、
$\displaystyle\alpha_1=\frac{\alpha+\sqrt{\alpha^2+4}}{2}$
$\displaystyle\beta_1=\frac{\beta+\sqrt{\beta^2+4}}{2}$
$\displaystyle\alpha=\frac{-1+\sqrt{17}}{2}$
$\displaystyle\beta=\frac{-1-\sqrt{17}}{2}$
を代入してみます。
$\displaystyle\alpha_1=\frac{\frac{-1+\sqrt{17}}{2}+\sqrt{\left(\frac{-1+\sqrt{17}}{2}\right)^2+4}}{2}
\\\displaystyle=\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}}{4}$
$\displaystyle\beta_1=\frac{\frac{-1-\sqrt{17}}{2}+\sqrt{\left(\frac{-1-\sqrt{17}}{2}\right)^2+4}}{2}
\\\displaystyle=\frac{-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}}{4}$
$\displaystyle\cos\frac{2\pi}{17}
\\\displaystyle=\frac{\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}}{4}+\sqrt{\left(\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}}{4}\right)^2-(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}})}}{4}
\\\displaystyle=\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}}}{16}$
計算できましたね。
お疲れ様でした。