\begin{align} \int_{0}^{\infty}\frac{\sin x}{x}dx=\frac{\pi}{2}\text{を既知として、}\int_{0}^{\infty}\frac{\sin^{2n+1} x}{x}dx\text{を求める} \end{align}
$ k_{1} ~k_{n} $を適当な数として
$$ f(k_{1} \pm k_{2} \pm \cdots \pm k_{n}) $$
で表される$2^{n-1}$個の数の総和を
$ \sum_{}f(k_{1} \pm k_{2} \pm \cdots \pm k_{n}) $と書くこととします
$$\sin^{2n+1}x=\frac{(-1)^n}{4^n}\sum_{k=0}^{2n}\binom{2n}{k}(-1)^k\sin(2n-2k+1)x$$
n変数のsinの積和公式
から
$$\prod_{i=1}^{2n+1}\sin(a_i)=\frac{(-1)^n}{4^n}\sum \sin(a_1\pm a_2\pm\cdots\pm a_{2n+1})(-1)^M \quad(M\text{は}\pm\text{の部分で}-\text{を選んだ回数})$$
となるので$a_1=a_2=\cdots=a_{2n+1}=x$とすれば
\begin{align}
\sin^{2n+1}x&=\frac{(-1)^n}{4^n}\sum \sin\underbrace{(1\pm 1\pm\cdots\pm 1)}_{2n+1\text個}x\cdot(-1)^M \\
&=\frac{(-1)^n}{4^n}\Bigg(\binom{2n}{0}\sin(2n+1)x-\binom{2n}{1}\sin(2n-1)x+\cdots+\binom{2n}{2n}\sin(-2n+1)x\Bigg)\quad(M=0,1,\cdots,2n\text{をそれぞれ考える})\\
&=\frac{(-1)^n}{4^n}\sum_{k=0}^{2n}\binom{2n}{k}(-1)^k\sin(2n-2k+1)x\blacksquare
\end{align}
$$\int_{0}^{\infty}\frac{\sin^{2n+1} x}{x}dx=\frac{\binom{2n}{n}}{2^{2n}}\frac{\pi}{2}$$
命題1から
\begin{align}
(-1)^n4^n\sin^{2n+1}x
&=\sum_{k=0}^{2n}\binom{2n}{k}(-1)^k\sin(2n-2k+1)x\\
&=\sum_{k=0}^{n}\binom{2n}{k}(-1)^k\sin(2n-2k+1)x+\sum_{k=n+1}^{2n}\binom{2n}{k}(-1)^k\sin(2n-2k+1)x\\
&=\sum_{k=0}^{n}\binom{2n}{k}(-1)^k\sin(2n-2k+1)x+\sum_{k=0}^{n-1}\binom{2n}{2n-k}(-1)^k\sin(-2n+2k+1)x\quad(2n-k\rightarrow k)\\
&=\sum_{k=0}^{n}\binom{2n}{k}(-1)^k\sin(2n-2k+1)x-\sum_{k=0}^{n-1}\binom{2n}{k}(-1)^k\sin(2n-2k-1)x\\
&=(-1)^n\binom{2n}{n}\sin x+\sum_{k=0}^{n-1}\binom{2n}{k}(-1)^k\Big(\sin(2n-2k+1)x-\sin(2n-2k-1)x\Big)\\
\end{align}
と変形できるため
\begin{align}
(-1)^n4^n\int_{0}^{\infty}\frac{\sin^{2n+1} x}{x}dx&=(-1)^n\binom{2n}{n}\int_{0}^{\infty}\frac{\sin x}{x}dx+\sum_{k=0}^{n-1}\binom{2n}{k}(-1)^k\int_{0}^{\infty}\Big(\frac{\sin(2n-2k+1)x}{x}-\frac{\sin(2n-2k-1)x}{x}\Big)dx\\
&=(-1)^n\binom{2n}{n}\frac{\pi}{2}+\sum_{k=0}^{n-1}\binom{2n}{k}(-1)^k\int_{0}^{\infty}\Big(\frac{\sin x}{x}-\frac{\sin x}{x}\Big)dx \quad\because 0\lt a\text{に対し} \int_{0}^{\infty}\frac{\sin ax}{x}dx=\int_{0}^{\infty}\frac{\sin x}{x}dx\\
&=(-1)^n\binom{2n}{n}\frac{\pi}{2}\\
\end{align}
$$\underline{\therefore \int_{0}^{\infty}\frac{\sin^{2n+1} x}{x}dx=\frac{\binom{2n}{n}}{2^{2n}}\frac{\pi}{2}}$$