0
大学数学基礎解説
文献あり

Another proof of Bertrand-Chebyshev Theorem

175
0

We prove that the following inequality holds for n2.
n<pm<2n ...(1)
Let pm be the largest prime number among the primes smaller than or equal to n. We assume that the following inequality holds.
pmn<2n<pm+1
n<pm+1pm
According to Cramér's conjecture pm+1pm<(logpm)2 holds for m5, n<(logpm)2 must hold when the above inequality holds. Since pmn holds,
n<(logn)2
holds. Let f(n)=(logn)2n. f(n)<0 holds for n11. The primes between n and 2n for 2n10 are as follows.
2<3<4
3<5<6
4<5,7<8
5<7<10
6<7,11<12
7<11,13<14
8<11,13<16
9<11,13,17<18
10<11,13,17,19<20
From the above, it is proved that the inequality (1) holds for n2. (Q.E.D.)

Second proof

According to Dusart's inequality m(logm+log(logm)1)<pm<m(logm+log(logm)) holds for m6, the inequality (1) holds if the following inequalities hold.
m(logm+log(logm))<2n
n<m(logm+log(logm)1)
Let f(m) be as follows.
f(m)=m(logm+log(logm)1)m(logm+log(logm))/21
By the inequalities described above, the inequality (1) holds if f(m)>0 holds. The divergence rate of the first term of the above function is greater than the second one, f(m)>0 for a certain value.
f(4)=1.57414275780365679752148558771627...
f(5)=0.78669273059697251094180863304310...
f(6)=0.12487265003214289616583688323301...
f(7)=1.14073985871756399965767447940122...
f(8)=2.24616363906512517053800977225754...
It is confirmed that f(m)>0 holds for m6. The primes between n and 2n for 2n6 are described above.
2<3<4
3<5<6
4<5,7<8
5<7<10
6<7,11<12
From the above, it is proved that the inequality (1) holds for n2. (Q.E.D.)

参考文献

投稿日:25日前
更新日:20日前
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中