前の記事 でGasper-Rahmanの四次変換公式を示した. それは以下のようなものである.
\begin{align} &W(ac^2/b;a^2b^2/q^2,ac/b,c,cq/b,cq^2/b,cq^3/b,cq^4/b;q^4;q^4)\\ &\qquad+\frac {(1-c)(1-ac/b)(cq/b,a^2b^3/cq^2;q)_{\infty}(ac^2q^4/b,ab^3/c^2q^2;q^4)_{\infty}}{(1-a^2b^2/cq^2)(1-ab^3/cq^2)(ac,ab^2/cq;q)_{\infty}(c^2q^2/ab^3,a^3b^5/c^2;q^4)_{\infty}}\\ &\qquad\cdot W(a^3b^5/c^2q^4;a^2b^2/q^2,a^2b^2/cq^2,ab^3/cq^2,ab^2/cq,ab^2/c,ab^2q/c,ab^2q^2/c;q^4;q^4)\\ &\qquad+\frac {ab^2(a,b,cq/b;q)_{\infty}(ac^2q^4/b,ab^3/c^2q^2,a^2b^2/q^2;q^4)_{\infty}}{cq^2(1-a^2b^2/cq^2)(ac,ab^2/cq^2,cq^3/ab^2;q)_{\infty}(cq^4,acq^4/b,ab^3/cq^2;q^4)_{\infty}}\\ &\qquad\qquad\cdot \Q11{a^2b^2/cq^2}{a^2b^2q^2/c}{q^4;\frac{ab^3q^2}c}\\ &=\frac{(ab;q)_{\infty}(ab/q;q^2)_{\infty}(ac^2q^4/b,ab^3/c^2q^2;q^4)_{\infty}}{(acq,ab^2/cq^2;q)_{\infty}}\\ &\qquad\cdot\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,b;q)_k(a^2b^2/q^2;q^4)_k(cq/b;q)_{3k}}{(cq^3/ab^2;q)_k(ab;q)_{2k}(ab/q;q^2)_k(cq^4,acq^4/b;q^4)_k}q^k \end{align}
今回はここから従う結果について述べる. まず, 定理1において, $c=1$とすると,
\begin{align}
&1+\frac {ab^2(b,q/b;q)_{\infty}(a^2b^2q^2;q^4)_{\infty}}{q^2(ab^2/q^2,q^3/ab^2;q)_{\infty}(q^4;q^4)_{\infty}}\\
&\qquad\qquad\cdot \Q11{a^2b^2/q^2}{a^2b^2q^2}{q^4;ab^3q^2}\\
&=\frac{(ab;q)_{\infty}(ab/q;q^2)_{\infty}(aq^4/b,ab^3/q^2;q^4)_{\infty}}{(aq,ab^2/q^2;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-aq^{5k}}{1-a}\frac{(a,b;q)_k(a^2b^2/q^2;q^4)_k(q/b;q)_{3k}}{(q^3/ab^2;q)_k(ab;q)_{2k}(ab/q;q^2)_k(q^4,aq^4/b;q^4)_k}q^k
\end{align}
つまり以下を得る.
\begin{align} &\sum_{0\leq k}\frac{1-aq^{5k}}{1-a}\frac{(a,b;q)_k(a^2b^2/q^2;q^4)_k(q/b;q)_{3k}}{(q^3/ab^2;q)_k(ab;q)_{2k}(ab/q;q^2)_k(q^4,aq^4/b;q^4)_k}q^k\\ &=\frac{(aq,ab^2/q^2;q)_{\infty}}{(ab;q)_{\infty}(ab/q;q^2)_{\infty}(aq^4/b,ab^3/q^2;q^4)_{\infty}}\\ &\qquad+\frac {ab^2(aq,b,q/b;q)_{\infty}(a^2b^2q^2;q^4)_{\infty}}{q^2(ab,q^3/ab^2;q)_{\infty}(ab/q;q^2)_{\infty}(q^4,aq^4/b,ab^3/q^2;q^4)_{\infty}}\\ &\qquad\qquad\cdot \Q11{a^2b^2/q^2}{a^2b^2q^2}{q^4;ab^3q^2} \end{align}
次に, 定理1において$b=q^2/a$とすると,
\begin{align}
&W(a^2c^2/q^2;q^2,a^2c/q^2,c,ac/q,acq;q^4;q^4)\\
&\qquad+\frac {(1-c)(1-a^2c/q^2)(ac/q,q^4/ac;q)_{\infty}(a^2c^2q^2,q^4/a^2c^2;q^4)_{\infty}}{(1-q^2/c)(1-q^4/a^2c)(ac,q^3/ac;q)_{\infty}(a^2c^2/q^4,q^{10}/a^2c^2;q^4)_{\infty}}\\
&\qquad\cdot W(q^6/a^2c^2;q^2,q^2/c,q^4/a^2c,q^3/ac,q^5/ac;q^4;q^4)\\
&\qquad+\frac {q^2(a,q^2/a;q)_{\infty}(a^2c^2q^2,q^4/a^2c^2,q^2;q^4)_{\infty}}{ac(1-q^2/c)(ac,q^2/ac;q)_{\infty}(cq^4,a^2cq^2,q^4/a^2c;q^4)_{\infty}}\\
&\qquad\qquad\cdot \Q11{q^2/c}{q^6/c}{q^4;\frac{q^8}{a^2c}}\\
&=\frac{(q^2;q)_{\infty}(q;q^2)_{\infty}(a^2c^2q^2,q^4/a^2c^2;q^4)_{\infty}}{(acq,q^2/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,q^2/a;q)_k(q^2;q^4)_k(ac/q;q)_{3k}}{(ac/q;q)_k(q^2;q)_{2k}(q;q^2)_k(cq^4,a^2cq^2;q^4)_k}q^k
\end{align}
ここで,
non-terminating Jacksonの和公式
より
\begin{align}
&W(a^2c^2/q^2;q^2,a^2c/q^2,c,ac/q,acq;q^4;q^4)\\
&\qquad+\frac {(1-c)(1-a^2c/q^2)(ac/q,q^4/ac;q)_{\infty}(a^2c^2q^2,q^4/a^2c^2;q^4)_{\infty}}{(1-q^2/c)(1-q^4/a^2c)(ac,q^3/ac;q)_{\infty}(a^2c^2/q^4,q^{10}/a^2c^2;q^4)_{\infty}}\\
&\qquad\cdot W(q^6/a^2c^2;q^2,q^2/c,q^4/a^2c,q^3/ac,q^5/ac;q^4;q^4)\\
&=\frac{(a^2c^2q^2,q^4,q^3/a,q^5/a,aq,aq^3,q^2,q^4/a^2c^2;q^4)_{\infty}}{(cq^4,a^2cq^2,acq^3,acq,q^2/c,q^4/a^2c,q^3/ac,q^5/ac;q^4)_{\infty}}\\
&=\frac{(q^2,aq,q^3/a;q^2)_{\infty}(a^2c^2q^2,q^4/a^2c^2;q^4)_{\infty}}{(acq,q^3/ac;q^2)_{\infty}(cq^4,a^2cq^2,q^2/c,q^4/a^2c;q^4)_{\infty}}
\end{align}
であるから, これを代入すると
\begin{align}
&\frac{(q^2,aq,q^3/a;q^2)_{\infty}(a^2c^2q^2,q^4/a^2c^2;q^4)_{\infty}}{(acq,q^3/ac;q^2)_{\infty}(cq^4,a^2cq^2,q^2/c,q^4/a^2c;q^4)_{\infty}}\\
&\qquad+\frac {q^2(a,q^2/a;q)_{\infty}(a^2c^2q^2,q^4/a^2c^2,q^2;q^4)_{\infty}}{ac(1-q^2/c)(ac,q^2/ac;q)_{\infty}(cq^4,a^2cq^2,q^4/a^2c;q^4)_{\infty}}\\
&\qquad\qquad\cdot \Q11{q^2/c}{q^6/c}{q^4;\frac{q^8}{a^2c}}\\
&=\frac{(q^2;q)_{\infty}(q;q^2)_{\infty}(a^2c^2q^2,q^4/a^2c^2;q^4)_{\infty}}{(acq,q^2/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,q^2/a;q)_k(q^2;q^4)_k(ac/q;q)_{3k}}{(ac/q;q)_k(q^2;q)_{2k}(q;q^2)_k(cq^4,a^2cq^2;q^4)_k}q^k
\end{align}
つまり, 以下を得る.
\begin{align} &\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,q^2/a;q)_k(q^2;q^4)_k(ac/q;q)_{3k}}{(ac/q;q)_k(q^2;q)_{2k}(q;q^2)_k(cq^4,a^2cq^2;q^4)_k}q^k\\ &=\frac{(acq^2,q^2/ac,aq,q^3/a;q^2)_{\infty}}{(q,q^3;q^2)_{\infty}(cq^4,q^2/c,a^2cq^2,q^4/a^2c;q^4)_{\infty}}\\ &\qquad+\frac {q^2(a,q^2/a;q)_{\infty}(q^2;q^4)_{\infty}}{ac(1-ac)(1-q^2/c)(q^2;q)_{\infty}(q;q^2)_{\infty}(cq^4,a^2cq^2,q^4/a^2c;q^4)_{\infty}}\Q11{q^2/c}{q^6/c}{q^4;\frac{q^8}{a^2c}} \end{align}
また, 定理1において両辺に$(ab^2/cq^2;q)_{\infty}$を掛けてから$c=ab^2/q^2$とすると
\begin{align}
&\frac {(aq,b,ab/q;q)_{\infty}(a^3b^3,q^2/ab,a^2b^2/q^2;q^4)_{\infty}}{(a^2b^2/q^2,q;q)_{\infty}(ab^2q^2,a^2bq^2,b;q^4)_{\infty}}\Q11{a}{aq^4}{q^4;bq^4}\\
&=\frac{(ab;q)_{\infty}(ab/q;q^2)_{\infty}(a^3b^3,q^2/ab;q^4)_{\infty}}{(a^2b^2/q;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-abq^{5k-2}}{1-a^2b^2/q^2}\frac{(a,b;q)_k(a^2b^2/q^2;q^4)_k(ab/q;q)_{3k}}{(q;q)_k(ab;q)_{2k}(ab/q;q^2)_k(ab^2q^2,a^2bq^2;q^4)_k}q^k
\end{align}
つまり, 以下を得る.
\begin{align} &\sum_{0\leq k}\frac{1-abq^{5k-2}}{1-a^2b^2/q^2}\frac{(a,b;q)_k(a^2b^2/q^2;q^4)_k(ab/q;q)_{3k}}{(q;q)_k(ab;q)_{2k}(ab/q;q^2)_k(ab^2q^2,a^2bq^2;q^4)_k}q^k\\ &=\frac {(aq,b;q)_{\infty}(a^2b^2q^2;q^4)_{\infty}}{(q;q)_{\infty}(abq;q^2)_{\infty}(ab^2q^2,a^2bq^2,b;q^4)_{\infty}}\Q11{a}{aq^4}{q^4;bq^4} \end{align}
定理1において, $n$を非負整数として$b=cq^{n+1}$とすると
\begin{align}
&W(acq^{-n-1};a^2c^2q^{2n},aq^{-n-1},c,q^{-n},q^{1-n},q^{2-n},q^{3-n};q^4;q^4)\\
&=\frac{(acq^{n+1};q)_{\infty}(acq^n;q^2)_{\infty}(acq^{3-n},acq^{3n+1};q^4)_{\infty}}{(acq,acq^{2n};q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,cq^{n+1};q)_k(a^2c^2q^{2n};q^4)_k(q^{-n};q)_{3k}}{(q^{1-2n}/ac;q)_k(acq^{n+1};q)_{2k}(acq^n;q^2)_k(cq^4,aq^{3-n};q^4)_k}q^k\\
&=\frac{(acq^n,acq^{3n+1};q^2)_{\infty}(acq^{3-n};q^4)_n}{(acq;q)_n(acq^{2n};q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,cq^{n+1};q)_k(a^2c^2q^{2n};q^4)_k(q^{-n};q)_{3k}}{(q^{1-2n}/ac;q)_k(acq^{n+1};q)_{2k}(acq^n;q^2)_k(cq^4,aq^{3-n};q^4)_k}q^k\\
&=\frac{(ac;q)_{2n}(acq^{3-n};q^4)_n}{(ac,acq;q)_n(acq^{n+1};q^2)_n}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,cq^{n+1};q)_k(a^2c^2q^{2n};q^4)_k(q^{-n};q)_{3k}}{(q^{1-2n}/ac;q)_k(acq^{n+1};q)_{2k}(acq^n;q^2)_k(cq^4,aq^{3-n};q^4)_k}q^k
\end{align}
となる. つまり, 以下を得る.
$n$を非負整数とするとき,
\begin{align}
&W(acq^{-n-1};a^2c^2q^{2n},aq^{-n-1},c,q^{-n},q^{1-n},q^{2-n},q^{3-n};q^4;q^4)\\
&=\frac{(ac;q)_{2n}(acq^{3-n};q^4)_n}{(ac,acq;q)_n(acq^{n+1};q^2)_n}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{5k}}{1-ac}\frac{(a,cq^{n+1};q)_k(a^2c^2q^{2n};q^4)_k(q^{-n};q)_{3k}}{(q^{1-2n}/ac;q)_k(acq^{n+1};q)_{2k}(acq^n;q^2)_k(cq^4,aq^{3-n};q^4)_k}q^k
\end{align}
が成り立つ.
この定理において, さらに$c=1$とすると以下の系を得る.
$n$を非負整数とするとき,
\begin{align}
&\sum_{0\leq k}\frac{1-aq^{5k}}{1-a}\frac{(a,q^{n+1};q)_k(a^2q^{2n};q^4)_k(q^{-n};q)_{3k}}{(q^{1-2n}/a;q)_k(aq^{n+1};q)_{2k}(aq^n;q^2)_k(q^4,aq^{3-n};q^4)_k}q^k\\
&=\frac{(a,aq;q)_n(aq^{n+1};q^2)_n}{(a;q)_{2n}(aq^{3-n};q^4)_n}
\end{align}
が成り立つ.