前回の記事 で示したBaileyの8ϕ7の3項変換公式はW(a;b,c,d,e,f;x)=8ϕ7[a,aq,−aq,b,c,d,e,fa,−a,aq/b,aq/c,aq/d,aq/e,aq/f;x]として,W(a;b,c,d,e,f;a2q2bcdef)=(aq,aq/de,aq/df,aq/ef,eq/c,fq/c,b/a,bef/a;q)∞(aq/d,aq/e,aq/f,aq/def,q/c,efq/c,be/a,bf/a;q)∞W(ef/c;aq/bc,aq/cd,ef/a,e,f;bda)+(aq,bq/a,bq/c,bq/d,bq/e,bq/f,d,e,f,aq/bc,bdef/a2q,a2q2/bdef;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,bd/a,be/a,bf/a,def/aq,aq2/def,q/c,b2q/a;q)∞⋅W(b2/a;b,bc/a,bd/a,be/a,bf/a;a2q2bcdef)というものだった. ここで, a2q=bcdefとすると, aq/bc⋅aq/cd=efq/cより, Rogersの和公式 W(a;b,c,d;aqbcd)=6ϕ5[a,aq,−aq,b,c,da,−a,aq/b,aq/c,aq/d;aqbcd]=(aq,aq/bc,aq/bd,aq/cd;q)∞(aq/b,aq/c,aq/d,aq/bcd;q)∞を用いて,W(a;b,c,d,e,f;q)=(aq,aq/de,aq/df,aq/ef,eq/c,fq/c,b/a,bef/a;q)∞(aq/d,aq/e,aq/f,aq/def,q/c,efq/c,be/a,bf/a;q)∞W(ef/c;ef/a,e,f;bda)+(aq,bq/a,bq/c,bq/d,bq/e,bq/f,d,e,f,aq/bc,1/c,cq;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,bd/a,be/a,bf/a,a/bc,bcq/a,q/c,b2q/a;q)∞⋅W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)=(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,b/a;q)∞(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)∞+ba(aq,bq/a,bq/c,bq/d,bq/e,bq/f,c,d,e,f;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a,b2q/a;q)∞⋅W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)よって, 以下を得る.
a2q=bcdefのとき,W(a;b,c,d,e,f;q)−ba(aq,bq/a,bq/c,bq/d,bq/e,bq/f,c,d,e,f;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a,b2q/a;q)∞⋅W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)=(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,b/a;q)∞(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)∞が成り立つ.
この左辺は, bを用いずに書くと,(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,aq/cdef;q)∞(aq/c,aq/d,aq/e,aq/f,aq/cde,aq/cdf,aq/cef,aq/def;q)∞と対称的な形で表すこともできる. 左辺は,W(a;b,c,d,e,f;q)−ba(aq,bq/a,bq/c,bq/d,bq/e,bq/f,c,d,e,f;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a,b2q/a;q)∞⋅W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)=(a,aq,−aq,b,c,d,e,f;q)∞(a,−a,aq/b,aq/c,aq/d,aq/e,aq/f,q;q)∞∑0≤n(aqn,−aqn,aqn+1/b,aqn+1/c,aqn+1/d,aqn+1/e,aqn+1/f,qn+1;q)∞(aqn,aqn+1,−aqn+1,bqn,cqn,dqn,eqn,fqn;q)∞qn−ba(aq,b2/a,bq/a,−bq/a,b,c,d,e,f;q)∞(b/a,−b/a,aq/b,aq/c,aq/d,aq/e,aq/f,b2q/a,q;q)∞∑0≤n(bqn/a,−bqn/a,bqn+1/a,bqn+1/c,bqn+1/d,bqn+1/e,bqn+1/f,qn+1;q)∞(b2qn/a,bqn+1/a,−bqn+1/a,bqn,bcqn/a,bdqn/a,beqn/a,bfqn/a;q)∞qn=(aq,b,c,d,e,f;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)∞∑0≤n(aqn,−aqn,aqn+1/b,aqn+1/c,aqn+1/d,aqn+1/e,aqn+1/f,qn+1;q)∞(aqn,aqn+1,−aqn+1,bqn,cqn,dqn,eqn,fqn;q)∞qn−ba(aq,b,c,d,e,f;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)∞∑0≤n(bqn/a,−bqn/a,bqn+1/a,bqn+1/c,bqn+1/d,bqn+1/e,bqn+1/f,qn+1;q)∞(b2qn/a,bqn+1/a,−bqn+1/a,bqn,bcqn/a,bdqn/a,beqn/a,bfqn/a;q)∞qn=−1a(aq,b,c,d,e,f;q)∞(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)∞∫ab(t/a,−t/a,tq/a,tq/b,tq/c,tq/d,tq/e,tq/f;q)∞(tq/a,−tq/a,t,bt/a,ct/a,dt/a,et/a,ft/a;q)∞dqtと表すことができる. よって,∫ab(t/a,−t/a,tq/a,tq/b,tq/c,tq/d,tq/e,tq/f;q)∞(tq/a,−tq/a,t,bt/a,ct/a,dt/a,et/a,ft/a;q)∞dqt=−a(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)∞(aq,b,c,d,e,f;q)∞(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,b/a;q)∞(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)∞=(b−a)(q,aq/b,bq/a,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef;q)∞(b,c,d,e,f,bc/a,bd/a,be/a,bf/a;q)∞つまり, 以下を得る.
a2q=bcdefのとき,∫ab(t/a,−t/a,tq/a,tq/b,tq/c,tq/d,tq/e,tq/f;q)∞(tq/a,−tq/a,t,bt/a,ct/a,dt/a,et/a,ft/a;q)∞dqt=(b−a)(q,aq/b,bq/a,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef;q)∞(b,c,d,e,f,bc/a,bd/a,be/a,bf/a;q)∞が成り立つ.
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。