0

Non-terminating Jacksonの和公式

42
0

前回の記事 で示したBaileyの8ϕ7の3項変換公式は
W(a;b,c,d,e,f;x)=8ϕ7[a,aq,aq,b,c,d,e,fa,a,aq/b,aq/c,aq/d,aq/e,aq/f;x]
として,
W(a;b,c,d,e,f;a2q2bcdef)=(aq,aq/de,aq/df,aq/ef,eq/c,fq/c,b/a,bef/a;q)(aq/d,aq/e,aq/f,aq/def,q/c,efq/c,be/a,bf/a;q)W(ef/c;aq/bc,aq/cd,ef/a,e,f;bda)+(aq,bq/a,bq/c,bq/d,bq/e,bq/f,d,e,f,aq/bc,bdef/a2q,a2q2/bdef;q)(aq/b,aq/c,aq/d,aq/e,aq/f,bd/a,be/a,bf/a,def/aq,aq2/def,q/c,b2q/a;q)W(b2/a;b,bc/a,bd/a,be/a,bf/a;a2q2bcdef)
というものだった. ここで, a2q=bcdefとすると, aq/bcaq/cd=efq/cより, Rogersの和公式
W(a;b,c,d;aqbcd)=6ϕ5[a,aq,aq,b,c,da,a,aq/b,aq/c,aq/d;aqbcd]=(aq,aq/bc,aq/bd,aq/cd;q)(aq/b,aq/c,aq/d,aq/bcd;q)
を用いて,
W(a;b,c,d,e,f;q)=(aq,aq/de,aq/df,aq/ef,eq/c,fq/c,b/a,bef/a;q)(aq/d,aq/e,aq/f,aq/def,q/c,efq/c,be/a,bf/a;q)W(ef/c;ef/a,e,f;bda)+(aq,bq/a,bq/c,bq/d,bq/e,bq/f,d,e,f,aq/bc,1/c,cq;q)(aq/b,aq/c,aq/d,aq/e,aq/f,bd/a,be/a,bf/a,a/bc,bcq/a,q/c,b2q/a;q)W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)=(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,b/a;q)(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)+ba(aq,bq/a,bq/c,bq/d,bq/e,bq/f,c,d,e,f;q)(aq/b,aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a,b2q/a;q)W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)
よって, 以下を得る.

Non-terminating Jacksonの和公式

a2q=bcdefのとき,
W(a;b,c,d,e,f;q)ba(aq,bq/a,bq/c,bq/d,bq/e,bq/f,c,d,e,f;q)(aq/b,aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a,b2q/a;q)W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)=(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,b/a;q)(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)
が成り立つ.

この左辺は, bを用いずに書くと,
(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,aq/cdef;q)(aq/c,aq/d,aq/e,aq/f,aq/cde,aq/cdf,aq/cef,aq/def;q)
と対称的な形で表すこともできる. 左辺は,
W(a;b,c,d,e,f;q)ba(aq,bq/a,bq/c,bq/d,bq/e,bq/f,c,d,e,f;q)(aq/b,aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a,b2q/a;q)W(b2/a;b,bc/a,bd/a,be/a,bf/a;q)=(a,aq,aq,b,c,d,e,f;q)(a,a,aq/b,aq/c,aq/d,aq/e,aq/f,q;q)0n(aqn,aqn,aqn+1/b,aqn+1/c,aqn+1/d,aqn+1/e,aqn+1/f,qn+1;q)(aqn,aqn+1,aqn+1,bqn,cqn,dqn,eqn,fqn;q)qnba(aq,b2/a,bq/a,bq/a,b,c,d,e,f;q)(b/a,b/a,aq/b,aq/c,aq/d,aq/e,aq/f,b2q/a,q;q)0n(bqn/a,bqn/a,bqn+1/a,bqn+1/c,bqn+1/d,bqn+1/e,bqn+1/f,qn+1;q)(b2qn/a,bqn+1/a,bqn+1/a,bqn,bcqn/a,bdqn/a,beqn/a,bfqn/a;q)qn=(aq,b,c,d,e,f;q)(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)0n(aqn,aqn,aqn+1/b,aqn+1/c,aqn+1/d,aqn+1/e,aqn+1/f,qn+1;q)(aqn,aqn+1,aqn+1,bqn,cqn,dqn,eqn,fqn;q)qnba(aq,b,c,d,e,f;q)(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)0n(bqn/a,bqn/a,bqn+1/a,bqn+1/c,bqn+1/d,bqn+1/e,bqn+1/f,qn+1;q)(b2qn/a,bqn+1/a,bqn+1/a,bqn,bcqn/a,bdqn/a,beqn/a,bfqn/a;q)qn=1a(aq,b,c,d,e,f;q)(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)ab(t/a,t/a,tq/a,tq/b,tq/c,tq/d,tq/e,tq/f;q)(tq/a,tq/a,t,bt/a,ct/a,dt/a,et/a,ft/a;q)dqt
と表すことができる. よって,
ab(t/a,t/a,tq/a,tq/b,tq/c,tq/d,tq/e,tq/f;q)(tq/a,tq/a,t,bt/a,ct/a,dt/a,et/a,ft/a;q)dqt=a(aq/b,aq/c,aq/d,aq/e,aq/f,q;q)(aq,b,c,d,e,f;q)(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,b/a;q)(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)=(ba)(q,aq/b,bq/a,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef;q)(b,c,d,e,f,bc/a,bd/a,be/a,bf/a;q)
つまり, 以下を得る.

a2q=bcdefのとき,
ab(t/a,t/a,tq/a,tq/b,tq/c,tq/d,tq/e,tq/f;q)(tq/a,tq/a,t,bt/a,ct/a,dt/a,et/a,ft/a;q)dqt=(ba)(q,aq/b,bq/a,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef;q)(b,c,d,e,f,bc/a,bd/a,be/a,bf/a;q)
が成り立つ.

投稿日:2024530
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

Wataru
Wataru
635
44488
超幾何関数, 直交関数, 多重ゼータ値などに興味があります

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中