0

n 次元極座標のラプラシアンを直接求める

569
0

直交座標(x1,x2,,xn)と極座標(r,θ1,,θn1)の関係を以下のように定義します.

(極座標)

x1=rcosθ1x2=rsinθ1cosθ2xn1=rsinθ1sinθ2sinθn2cosθn1xn=rsinθ1sinθ2sinθn2sinθn1

直交座標におけるラプラシアンΔ=i=1n2xi2=2x12+2x22++2xn2を極座標に変換した形を求めるとき,2次元の場合の変換を繰り返す導出が一般的ですが,ここでは1回の変換でまとめて計算します.

1階微分

連鎖律より,r,θ1,,θn1x1,x2,,xnの間には以下のような関係が成り立ちます.

(rθ1θn1)=(x1rx2rxnrx1θ1x2θ1xnθ1x1θn1x2θn1xnθn1)(x1x2xn)

行列(x1rx2rxnrx1θ1x2θ1xnθ1x1θn1x2θn1xnθn1)Aとおきます.

x1,x2,,xnr,θ1,,θn1で表したいので,左からAの逆行列をかけることを考えます.そのため,Aの成分を具体的に表し,より簡単な行列の積として書くことを考えます.

A=(x1rx2rxnrx1θ1x2θ1xnθ1x1θn1x2θn1xnθn1)=(cosθ1sinθ1cosθ2sinθ1sinθ2cosθ3sinθ1sinθ2sinθn3cosθn2sinθ1sinθ2sinθn2cosθn1sinθ1sinθ2sinθn2sinθn1rsinθ1rcosθ1cosθ2rcosθ1sinθ2cosθ3rcosθ1sinθ2sinθn3cosθn2rcosθ1sinθ2sinθn2cosθn1rcosθ1sinθ2sinθn2sinθn10rsinθ1sinθ2rsinθ1cosθ2cosθ3rsinθ1cosθ2sinθn3cosθn2rsinθ1cosθ2sinθn2cosθn1rsinθ1cosθ2sinθn2sinθn10rsinθ1sinθ2sinθ30rsinθ1sinθ2sinθn3sinθn2rsinθ1sinθ2cosθn2cosθn1rsinθ1sinθ2cosθn2sinθn10000rsinθ1sinθ2sinθn2sinθn1rsinθ1sinθ2sinθn2cosθn1)
1,2,3,,n行から,それぞれ1,r,rsinθ1,,rsinθ1sinθn2をくくり出します.行列の第1,2,,n行の各成分をそれぞれa1,a2,,an倍する操作は,左から(a1000a2an1000an)を掛ける操作と言い換えられます.
A=(1000rrsinθ1rsinθ1sinθn3000rsinθ1sinθn2)(cosθ1sinθ1cosθ2sinθ1sinθ2cosθ3sinθ1sinθ2sinθn3cosθn2sinθ1sinθ2sinθn2cosθn1sinθ1sinθ2sinθn2sinθn1sinθ1cosθ1cosθ2cosθ1sinθ2cosθ3cosθ1sinθ2sinθn3cosθn2cosθ1sinθ2sinθn2cosθn1cosθ1sinθ2sinθn2sinθn10sinθ2cosθ2cosθ3cosθ2sinθn3cosθn2cosθ2sinθn2cosθn1cosθ2sinθn2sinθn1sinθ3cosθn3cosθn2sinθn2cosθn2cosθn1cosθn2sinθn100sinθn1cosθn1)
実は右側の行列は直交行列になっているのですが,ここではそれは用いずに,さらに分解を進めます.以下,簡単のためsinθi,cosθi0を仮定します.
n1列のtanθn1倍を第n列に加え,i=n2,n3,,2,1の順に第i列のtanθicosθi1倍を第i+1列に加えます.列基本変形は,右から基本行列をかけることで表されます.(i,i) (2in1)成分はcosθi1cosθitanθi1cosθi(sinθi1)=(cos2θi1cosθi1+sin2θi1cosθi1)cosθi=cosθicosθi1(n,n)成分はcosθn1tanθn1(sinθn1)=cos2θn1cosθn1+sin2θn1cosθn1=1cosθn1となります.

A=(1000rrsinθ1rsinθ1sinθn3000rsinθ1sinθn2)(cosθ100sinθ1cosθ2cosθ10sinθ2cosθ3cosθ2sinθn2cosθn1cosθn2000sinθn11cosθn1)(1tanθ1cosθ200010010001)(10000010001tanθn2cosθn1010001)(100001001tanθn1001)

1行のtanθ1倍を第2行に加え,i=2,3,,n1の順に第i行のcosθi1tanθi倍を第i+1行に加えます.行基本変形は,左から基本行列をかけることで表されます.

A=(1000rrsinθ1rsinθ1sinθn3000rsinθ1sinθn2)(100tanθ1100100001)(100010cosθ1tanθ210001000001)(10001001000cosθn2tanθn11)(cosθ1000cosθ2cosθ1cosθn1cosθn20001cosθn1)(1tanθ1cosθ200010010001)(10000010001tanθn2cosθn1010001)(100001001tanθn1001)

r,sinθi,cosθi0のとき,上の積に現れるそれぞれの行列は正則なので,その積であるAも正則となります.逆行列は以下のようになります.
A1=(100001001tanθn1001)(10000010001tanθn2cosθn1010001)(1tanθ1cosθ200010010001)(1cosθ1000cosθ1cosθ2cosθn2cosθn1000cosθn1)(10001001000cosθn2tanθn11)(100010cosθ1tanθ210001000001)(100tanθ1100100001)(10001r1rsinθ11rsinθ1sinθn30001rsinθ1sinθn2)

(1cosθ1000cosθ1cosθ2cosθn2cosθn1000cosθn1)に対し,i=2,3,,n1の順に第i行のtanθi1cosθi倍を第i1行に加え,第n行のtanθn1倍を第n1行に加えます.

A1=(1cosθ1sinθ1000cosθ1cosθ2sinθ2sinθn20cosθn2cosθn1sinθn100cosθn1)(10001001000cosθn2tanθn11)(100010cosθ1tanθ210001000001)(100tanθ1100100001)(10001r1rsinθ11rsinθ1sinθn30001rsinθ1sinθn2)

n1列に第n列のcosθn2tanθn1倍を加えます.(n1,n1)成分はcosθn2cosθn1+cosθn2tanθn1(sinθn1)=cosθn2(1cosθn1sin2θn1cosθn1)=cosθn2cosθn1となります.

A1=(1cosθ1sinθ1000cosθ1cosθ2sinθ2sinθn3cosθn3cosθn2sinθn2000cosθn2cosθn1sinθn100cosθn2sinθn1cosθn1)(1000100100cosθn3tanθn21000001)(100010cosθ1tanθ210001000001)(100tanθ1100100001)(10001r1rsinθ11rsinθ1sinθn30001rsinθ1sinθn2)

n2列に第n1列のcosθn3tanθn2倍を加えます.(n2,n2)成分はcosθn3cosθn2+cosθn3tanθn2(sinθn2)=cosθn3(1cosθn2sin2θn2cosθn2)=cosθn3cosθn2となります.

A1=(1cosθ1sinθ1000cosθ1cosθ2sinθ2sinθn4cosθn4cosθn3sinθn300cosθn3cosθn2sinθn2000cosθn3sinθn2cosθn1cosθn2cosθn1sinθn100cosθn3sinθn2sinθn1cosθn2sinθn1cosθn1)(1000100100cosθn4tanθn31000010000001)(100010cosθ1tanθ210001000001)(100tanθ1100100001)(10001r1rsinθ11rsinθ1sinθn30001rsinθ1sinθn2)

これを繰り返し,第2列に第3列のcosθ1tanθ2倍を加えるまで進めます.

A1=(1cosθ1sinθ1000cosθ1cosθ2sinθ2cosθ1sinθ2cosθ3cosθ2cosθ3sinθn200cosθ1sinθ2sinθn2cosθn1cosθ2sinθ3sinθn2cosθn1cosθn2cosθn1sinθn10cosθ1sinθ2sinθn2sinθn1cosθ2sinθ3sinθn2sinθn1cosθn2sinθn1cosθn1)(100tanθ1100100001)(10001r1rsinθ11rsinθ1sinθn30001rsinθ1sinθn2)

1列に第2列のtanθ1倍を加えます.(1,1)成分は1cosθ1+tanθ1(sinθ1)=1cosθ1sin2θ1cosθ1=cosθ1となります.

A1=(cosθ1sinθ100sinθ1cosθ2cosθ1cosθ2sinθ2sinθ1sinθ2cosθ3cosθ1sinθ2cosθ3cosθ2cosθ3sinθn20sinθ1sinθ2sinθn2cosθn1cosθ1sinθ2sinθn2cosθn1cosθ2sinθ3sinθn2cosθn1cosθn2cosθn1sinθn1sinθ1sinθ2sinθn2sinθn1cosθ1sinθ2sinθn2sinθn1cosθ2sinθ3sinθn2sinθn1cosθn2sinθn1cosθn1)(10001r1rsinθ11rsinθ1sinθn30001rsinθ1sinθn2)

1,2,3,,n列の各成分をそれぞれ1,1r,1rsinθ1,,1rsinθ1sinθn2 倍します.

A1=(cosθ11rsinθ100sinθ1cosθ21rcosθ1cosθ21r1sinθ1sinθ2sinθ1sinθ2cosθ31rcosθ1sinθ2cosθ31r1sinθ1cosθ2cosθ31r1sinθ11sinθ21sinθn3sinθn20sinθ1sinθ2sinθn2cosθn11rcosθ1sinθ2sinθn2cosθn11r1sinθ1cosθ2sinθ3sinθn2cosθn11r1sinθ11sinθ21sinθn3cosθn2cosθn11r1sinθ11sinθ21sinθn2sinθn1sinθ1sinθ2sinθn2sinθn11rcosθ1sinθ2sinθn2sinθn11r1sinθ1cosθ2sinθ3sinθn2sinθn11r1sinθ11sinθ21sinθn3cosθn2sinθn11r1sinθ11sinθ21sinθn2cosθn1)

よって,以下が成り立ちます.
(x1x2xn)=(cosθ11rsinθ100sinθ1cosθ21rcosθ1cosθ21r1sinθ1sinθ2sinθ1sinθ2cosθ31rcosθ1sinθ2cosθ31r1sinθ1cosθ2cosθ31r1sinθ11sinθ21sinθn3sinθn20sinθ1sinθ2sinθn2cosθn11rcosθ1sinθ2sinθn2cosθn11r1sinθ1cosθ2sinθ3sinθn2cosθn11r1sinθ11sinθ21sinθn3cosθn2cosθn11r1sinθ11sinθ21sinθn2sinθn1sinθ1sinθ2sinθn2sinθn11rcosθ1sinθ2sinθn2sinθn11r1sinθ1cosθ2sinθ3sinθn2sinθn11r1sinθ11sinθ21sinθn3cosθn2sinθn11r1sinθ11sinθ21sinθn2cosθn1)(rθ1θn1)
これをそれぞれの成分の式に書き直すと,以下のようになります.

xi=j=1i1sinθjcosθir+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)θj1rj=1i11sinθjsinθiθi(1in1)xn=i=1n1sinθir+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθj)θi

2階微分(x1,x2,,xn1)

1in1として,2xi2を計算します.
2xi2=(j=1i1sinθjcosθir+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)θj1rj=1i11sinθjsinθiθi)(j=1i1sinθjcosθir+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)θj1rj=1i11sinθjsinθiθi)
左側の項をr,θj,θiに分けて展開します.θjについては,右側の項で添字がかぶらないように,j,kをそれぞれk,lに置き換えます.
2xi2=j=1i1sinθjcosθir(j=1i1sinθjcosθir(1)+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)θj(2)+(1r)j=1i11sinθjsinθiθi(3))=+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)θj(k=1i1sinθkcosθir(4)+k=1i1(1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi)θk(5)1rk=1i11sinθksinθiθi(6))=1rj=1i11sinθjsinθiθi(j=1i1sinθjcosθir(7)+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)θj(8)1rj=1i11sinθjsinθiθi(9))

積の微分に注意して,(1)から(9)をそれぞれ微分します.

  • (1): 係数にrが含まれないので,1階偏微分は現れず,r(r)=2r2となります.
  • (2): 係数に含まれるrに依存する項は1rなので,r(1rθj)=1r2rθj1r2θjとなります.
  • (3): 係数に含まれるrに依存する項は1rなので,r(1rθj)=1r2rθj+1r2θjとなります.
  • (4): 1ji1より,係数に含まれるθjに依存する項はsinθjです.θj(sinθjr)=sinθj2θjr+cosθjr=sinθj(2θjr+cosθjsinθjr)なので,r2θjr+cosθjsinθjrで置き換えます.
  • (5): 係数に含まれるθjに依存する項の形は,jkの大小関係により異なります.
    • 1kj1のとき,k+1ji1なので,係数に含まれるθjに依存する項はsinθjです.θj(sinθjθk)=sinθj2θjθk+cosθjθk=sinθj(2θjθk+cosθjsinθjθk)なので,θk2θjθk+cosθjsinθjθkで置き換えます.
    • k=jのとき,係数に含まれるθjに依存する項はcosθjなので,θj(cosθjθj)=cosθj2θj2sinθjθjとなります.
    • j+1ki1のとき,1jk1なので,係数に含まれるθjに依存する項は1sinθjです.θj(1sinθjθk)=1sinθj2θjθkcosθjsin2θjθk=1sinθj(2θjθkcosθjsinθjθk)なので,θk2θjθkcosθjsinθjθkで置き換えます.
  • (6): 1ji1より,係数に含まれるθjに依存する項は1sinθjです.θj(1sinθjθi)=1sinθj2θjθicosθjsin2θjθi=1sinθj(2θjθicosθjsinθjθi)なので,θi2θjθicosθjsinθjθiで置き換えます.
  • (7): 係数に含まれるθiに依存する項はcosθiなので,θi(cosθir)=cosθi2θirsinθirとなります.
  • (8): 係数に含まれるθiに依存する項はcosθiなので,θi(cosθiθj)=cosθi2θiθjsinθiθjとなります.
  • (9): 係数に含まれるθiに依存する項はsinθiなので,θi(sinθiθi)=sinθi2θi2+cosθiθiとなります.

2xi2=j=1i1sinθjcosθi(j=1i1sinθjcosθi2r2+j=1i1(k=1j11sinθkcosθjk=j+1i1sinθkcosθi)(1r2rθj1r2θj)+j=1i11sinθjsinθi(1r2rθi+1r2θi))=+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)(k=1i1sinθkcosθi(2θjr+cosθjsinθjr)+k=1j1(1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi)(2θjθk+cosθjsinθjθk)+1rk=1j11sinθkk=j+1i1sinθlcosθi(cosθj2θj2sinθjθj)+k=j+1i1(1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi)(2θjθkcosθjsinθjθk)1rk=1i11sinθksinθi(2θjθicosθjsinθjθi))=1rj=1i11sinθjsinθi(j=1i1sinθj(cosθi2θirsinθir)+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθk)(cosθi2θiθjsinθiθj)1rj=1i11sinθj(sinθi2θi2+cosθiθi))

偏微分の種類ごとにまとめます.異なる変数に関する偏微分は交換してもよいとします.
2xi2=(j=1i1sinθjcosθij=1i1sinθjcosθi)2r2=+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)2θj2=+(1rj=1i11sinθjsinθi(1r)j=1i11sinθjsinθi)2θi2=+j=1i1(k=1i1sinθkcosθik=1j11sinθkcosθjk=j+1i1sinθkcosθi1r+1rk=1j11sinθkcosθjk=j+1i1sinθkcosθik=1i1sinθkcosθi)2rθj=+(j=1i1sinθjcosθij=1i11sinθjsinθi(1r)1rj=1i11sinθjsinθij=1i1sinθjcosθi)2rθi=+j=1i1k=j+1i1(1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi1rl=1j11sinθlcosθjl=j+1i1sinθlcosθi+1rl=1j11sinθlcosθjl=j+1i1sinθlcosθi1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi)2θjθk=+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi(1r)k=1i11sinθksinθi1rk=1i11sinθksinθi1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi)2θjθi=+(j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθik=1i1sinθkcosθicosθjsinθj)1rj=1i11sinθjsinθij=1i1sinθj(sinθi))r=+j=1i1(k=1i1sinθkcosθik=1j11sinθkcosθjk=j+1i1sinθkcosθi(1r2)+k=j+1i1(1rl=1k11sinθlcosθkl=k+1i1sinθkcosθi1rl=1j11sinθlcosθjl=j+1i1sinθlcosθicosθksinθk)+1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi1rk=1j11sinθkk=j+1i1sinθkcosθi(sinθj)=+j=1i1(+k=1i1(1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi1rl=1j11sinθlcosθjl=j+1i1sinθlcosθi(cosθksinθk))1rk=1i11sinθksinθi1rk=1j11sinθkcosθjk=j+1i1sinθk(sinθi))θj=+(j=1i1sinθjcosθij=1i11sinθjsinθi1r2+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi(1r)k=1i11sinθksinθi(cosθjsinθj))1rj=1i11sinθjsinθi(1r)j=1i11sinθjcosθi)θi

偏微分の種類ごとに,係数を計算します.

2r2

2r2の係数はj=1i1sin2θjcos2θiとなります.

2θj2 (1ji1)

2θj2の係数は1r2k=1j11sin2θkcos2θjk=j+1i1sin2θkcos2θiとなります.

2θi2

2θi2の係数は1r2j=1i11sin2θjsin2θiとなります.

2rθj (1ji1)

2rθjの係数は2つの同じ項の和となっており,そのうち1つは
=k=1i1sinθkcosθik=1j11sinθkcosθjk=j+1i1sinθkcosθi1r=k=1j1sinθksinθjk=j+1i1sinθkcosθik=1j11sinθkcosθjk=j+1i1sinθkcosθi1r=1rsinθjcosθjk=j+1i1sin2θkcos2θi
なので,2rθjの係数は2rsinθjcosθjk=j+1i1sin2θkcos2θiです.

2rθi

2rθiの係数は2つの同じ項の和となっており,そのうち1つはj=1i1sinθjcosθij=1i11sinθjsinθi(1r)=1rsinθicosθiなので,2rθiの係数は2rsinθicosθiです.

2θjθk (1j<ki1)

2θjθkの係数は2つの同じ項の和となっており,そのうち1つは
=1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi1rl=1j11sinθlcosθjl=j+1i1sinθlcosθi=1rl=1j11sinθl1sinθjl=j+1k11sinθlcosθkl=k+1i1sinθlcosθi1rl=1j11sinθlcosθjl=j+1k1sinθlsinθkl=k+1i1sinθlcosθi=1r2l=1j11sin2θlcosθjsinθjsinθkcosθkl=k+1i1sin2θlcos2θl
なので,2θjθkの係数は2r2l=1j11sin2θlcosθjsinθjsinθkcosθkl=k+1i1sin2θlcos2θiです.

2θjθi (1ji1)

2θjθiの係数は2つの同じ項の和となっており,そのうち1つは
=1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi(1r)k=1i11sinθksinθi=1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi(1r)k=1j11sinθk1sinθjk=j+1i11sinθksinθi=1r2k=1j11sin2θkcosθjsinθjsinθicosθi
なので,2θjθiの係数は2r2k=1j11sin2θkcosθjsinθjsinθicosθiです.

r

rの係数は
=j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθik=1i1sinθkcosθicosθjsinθj)1rj=1i11sinθjsinθij=1i1sinθj(sinθi)=j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθik=1j1sinθksinθjk=j+1i1sinθkcosθicosθjsinθj)+1rsin2θi=j=1i1(1rcos2θjk=j+1i1sin2θkcos2θi)+1rsin2θi=1rj=1i1((1sin2θj)k=j+1i1sin2θk)cos2θi+1rsin2θi=1rj=1i1(k=j+1i1sin2θkk=ji1sin2θk)cos2θi+1rsin2θi=1r(1j=1i1sin2θj)cos2θi+1rsin2θi=1r1rj=1i1sin2θjcos2θi

θj (1ji1)

θjの係数は
=k=1i1sinθkcosθik=1j11sinθkcosθjk=j+1i1sinθkcosθi(1r2)+k=j+1i1(1rl=1k11sinθlcosθkl=k+1i1sinθkcosθi1rl=1j11sinθlcosθkl=j+1i1sinθlcosθicosθksinθk)+1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi1rk=1j11sinθkk=j+1i1sinθkcosθi(sinθj)+k=1i1(1rl=1k11sinθlcosθkl=k+1i1sinθlcosθi1rl=1j11sinθlcosθjl=j+1i1sinθlcosθi(cosθksinθk))1rk=1i11sinθksinθi1rk=1j11sinθkcosθjk=j+1i1sinθk(sinθi)=1r2sinθjcosθjk=j+1i1sin2θkcos2θi+k=j+1i1(1r2l=1j11sin2θlcosθjsinθjcos2θkl=k+1i1sin2θlcos2θi)1r2k=1j11sin2θksinθjcosθjk=j+1i1sin2θkcos2θi+k=1j1(1r2l=1k11sin2θlcos2θksin2θksinθjcosθjl=j1i1sin2θlcos2θi)+1r2k=1j11sin2θkcosθjsinθjsin2θi=1r2sinθjcosθjk=j+1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθjk=j+1i1(cos2θkl=k+1i1sin2θl)cos2θi1r2k=1j11sin2θksinθjcosθjk=j+1i1sin2θkcos2θi1r2k=1j1(l=1k11sin2θlcos2θksin2θk)sinθjcosθjk=j1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθjsin2θi=1r2sinθjcosθjk=j+1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθjk=j+1i1((1sin2θk)l=k+1i1sin2θl)cos2θi1r2k=1j11sin2θksinθjcosθjk=j+1i1sin2θkcos2θi1r2k=1j1(l=1k11sin2θl(1sin2θk1))sinθjcosθjk=j1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθjsin2θi=1r2sinθjcosθjk=j+1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθjk=j+1i1(l=k+1i1sin2θll=ki1sin2θl)cos2θi1r2k=1j11sin2θksinθjcosθjk=j+1i1sin2θkcos2θi1r2k=1j1(l=1k1sin2θll=1k11sin2θl)sinθjcosθjk=j1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθjsin2θi=1r2sinθjcosθjk=j+1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθj(1k=j+1i1sin2θk)cos2θi1r2k=1j11sin2θksinθjcosθjk=j+1i1sin2θkcos2θi1r2(k=1j11sin2θk1)sinθjcosθjk=j1i1sin2θkcos2θi+1r2k=1j11sin2θkcosθjsinθjsin2θi=(1r2cosθjsinθjcos2θi+1r2cosθjsinθjsin2θi)k=1j11sin2θk+(1r2sinθjcosθj+1r2sinθjcosθj)k=j1i1sin2θk+(1r2cosθjsinθjcos2θi1r2sinθjcosθjcos2θi1r2sinθjcosθjcos2θi)k=1j11sin2θkk=j+1i1sin2θk=1r2cosθjsinθjk=1j11sin2θk1r2(cosθjsinθj+2sinθjcosθj)cos2θik=1j11sin2θkk=j+1i1sin2θk=1r2k=1j11sin2θkcosθjsinθj1r2k=1j11sin2θk(cosθjsinθj+2sinθjcosθj)k=j+1i1sin2θkcos2θi

θi

θiの係数は
=j=1i1sinθjcosθij=1i11sinθjsinθi1r2+j=1i1(1rk=1j11sinθkcosθjk=j+1i1sinθkcosθi(1r)k=1i11sinθksinθi(cosθjsinθj))1rj=1i11sinθjsinθi(1r)j=1i11sinθjcosθi=1r2sinθicosθi+j=1i1(1r2k=1j11sin2θkcos2θjsin2θjsinθicosθi)+1r2j=1i11sin2θjsinθicosθi=1r2sinθicosθi+1r2j=1i1(k=1j11sin2θkcos2θjsin2θj)sinθicosθi+1r2j=1i11sin2θjsinθicosθi=1r2sinθicosθi+1r2j=1i1(k=1j11sin2θk(1sin2θj1))sinθicosθi+1r2j=1i11sin2θjsinθicosθi=1r2sinθicosθi+1r2j=1i1(k=1j1sin2θkk1j11sin2θk)sinθicosθi+1r2j=1i11sin2θjsinθicosθi=1r2sinθicosθi+1r2(j=1i11sin2θj1)sinθicosθi+1r2j=1i11sin2θjsinθicosθi=2r2j=1i11sin2θjsinθicosθi

よって,以下の式を得ます.

2xi2=j=1i1sin2θjcos2θi2r2+j=1i1(1r2k=1j11sin2θkcos2θjk=j+1i1sin2θkcos2θi)2θj2+1r2j=1i11sin2θjsin2θi2θi2+j=1i1(2rsinθjcosθjk=j+1i1sin2θkcos2θi)2rθj2rsinθicosθi2rθi+j=1i1k=j+1i1(2r2l=1j11sin2θlcosθjsinθjsinθkcosθkl=k+1i1sin2θlcos2θi)2θjθk+j=1i1(2r2k=1j11sin2θkcosθjsinθjsinθicosθi)2θjθi+(1r1rj=1i1sin2θjcos2θi)r+j=1i1(1r2k=1j11sin2θkcosθjsinθj1r2k=1j11sin2θk(cosθjsinθj+2sinθjcosθj)k=j+1i1sin2θkcos2θi)θj+2r2j=1i11sin2θjsinθicosθiθi

2階微分(xn)

2xn2を計算します.
2xn2=(i=1n1sinθir+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθj)θi)(i=1n1sinθir+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθj)θi)
左側の項をr,θiに分けて展開します.θiについては,右側の項で添字がかぶらないように,i,jをそれぞれj,kに置き換えます.
2xn2=i=1n1sinθir(i=1n1sinθir+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθj)θi)=+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθj)θi(j=1n1sinθjr+j=1n1(1rk=1j11sinθkcosθjk=j+1n1sinθk)θj)=i=1n1sinθi(i=1n1sinθi2r2+i=1n1(j=1i11sinθjcosθij=i+1n1sinθj)(1r2rθi1r2θi))=+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθj)(j=1n1sinθj(2θir+cosθisinθir)+j=1i1(1rk=1j11sinθkcosθjk=j+1n1sinθk)(2θiθj+cosθisinθiθj)+1rj=1i11sinθjj=i+1n1sinθj(cosθi2θi2sinθiθi)+j=i+1n1(1rk=1j11sinθkcosθjk=j+1n1sinθk)(2θiθjcosθisinθiθj))=(i=1n1sinθii=1n1sinθi)2r2=+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθj1rj=1i11sinθjj=i+1n1sinθjcosθi)2θi2=+i=1n1(j=1n1sinθjj=1i11sinθjcosθij=i+1n1sinθj1r+1rj=1i11sinθjcosθij=i+1n1sinθjj=1n1sinθj)2rθi=+i=1n1j=i+1n1(1rk=1j11sinθkcosθjk=j+1n1sinθk1rk=1i11sinθkcosθik=i+1n1sinθk+1rk=1i11sinθkcosθik=i+1n1sinθk1rk=1j11sinθkcosθjk=j+1n1sinθk)2θiθj=+i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθjj=1n1sinθjcosθisinθi)r=+i=1n1(j=1n1sinθjj=1i11sinθjcosθij=i+1n1sinθj(1r2)+j=i+1n1(1rk=1j11sinθkcosθjk=j+1n1sinθk1rk=1i11sinθkcosθik=j+1n1sinθkcosθjsinθj)+1rj=1i11sinθjcosθij=i+1n1sinθj1rj=1i11sinθjj=i+1n1sinθj(sinθi)+j=1i1(1rk=1j11sinθkcosθjk=j+1n1sinθk1rk=1i11sinθkcosθik=j+1n1sinθk(cosθjsinθj)))θi

偏微分の種類ごとに,係数を計算します.

2r2

2r2の係数はi=1n1sin2θiとなります.

2θi2 (1in1)

2θj2の係数は1r2j=1i11sin2θjcos2θij=i+1n1sin2θjとなります.

2rθi (1in1)

2rθiの係数は2つの同じ項の和となっており,そのうち1つは
=j=1n1sinθjj=1i11sinθjcosθij=i+1n1sinθj1r=j=1i1sinθjsinθij=i+1n1sinθjj=1i11sinθjcosθij=i+1n1sinθj1r=1rsinθicosθij=i+1i1sin2θj
なので,2rθiの係数は2rsinθicosθij=i+1i1sin2θjです.

2θiθj (1i<jn1)

2θiθjの係数は2つの同じ項の和となっており,そのうち1つは
=1rk=1j11sinθkcosθjk=j+1n1sinθk1rk=1i11sinθkcosθik=i+1n1sinθk=1rk=1i11sinθk1sinθik=i+1j11sinθkcosθjk=j+1n1sinθk1rk=1i11sinθkcosθik=i+1j1sinθksinθjk=j+1n1sinθk=1r2k=1i11sin2θkcosθisinθicosθjsinθjk=j+1n1sin2θk
なので,2θjθkの係数は2r2k=1i11sin2θkcosθisinθicosθjsinθjk=j+1n1sin2θkです.

r

rの係数は
=i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθjj=1n1sinθjcosθisinθi)=i=1n1(1rj=1i11sinθjcosθij=i+1n1sinθjj=1i1sinθjsinθij=i+1n1sinθjcosθisinθi)=i=1n1(1rcos2θij=i+1n1sin2θj)=1ri=1n1((1cos2θi)j=i+1n1sin2θj)=1ri=1n1(j=i+1n1sin2θjj=in1sin2θj)=1r(1i=1n1sin2θi)=1r1ri=1n1sin2θi

θi (1in1)

θiの係数は
=j=1n1sinθjj=1i11sinθjcosθij=i+1n1sinθj(1r2)+j=i+1n1(1rk=1j11sinθkcosθjk=j+1n1sinθk1rk=1i11sinθkcosθik=j+1n1sinθkcosθjsinθj)+1rj=1i11sinθjcosθij=i+1n1sinθj1rj=1i11sinθjj=i+1n1sinθj(sinθi)+j=1i1(1rk=1j11sinθkcosθjk=j+1n1sinθk1rk=1i11sinθkcosθik=j+1n1sinθk(cosθjsinθj))=1r2sinθicosθij=i+1n1sinθj+j=i+1n1(1r2k=1i11sin2θkcosθisinθicos2θjk=j+1n1sin2θk)1r2j=1i11sin2θjsinθicosθij=i+1n1sin2θj+j=1i1(1r2k=1j11sin2θkcos2θjsin2θjsinθicosθik=i+1n1sin2θk)=1r2sinθicosθij=i+1n1sinθj+1r2j=1i11sin2θjcosθisinθij=i+1n1(cos2θjk=j+1n1sin2θk)1r2j=1i11sin2θjsinθicosθij=i+1n1sin2θj1r2j=1i1(k=1j11sin2θkcos2θjsin2θj)sinθicosθij=i+1n1sin2θj=1r2sinθicosθij=i+1n1sinθj+1r2j=1i11sin2θjcosθisinθij=i+1n1((1sin2θj)k=j+1n1sin2θk)1r2j=1i11sin2θjsinθicosθij=i+1n1sin2θj1r2j=1i1(k=1j11sin2θk(1sin2θj1))sinθicosθij=i+1n1sin2θj=1r2sinθicosθij=i+1n1sinθj+1r2j=1i11sin2θjcosθisinθij=i+1n1(k=j+1n1sin2θkk=jn1sin2θk)1r2j=1i11sin2θjsinθicosθij=i+1n1sin2θj1r2j=1i1(k=1j1sin2θkk=1j11sin2θk)sinθicosθij=i+1n1sin2θj=1r2sinθicosθij=i+1n1sinθj+1r2j=1i11sin2θjcosθisinθi(1j=i+1n1sin2θj)1r2j=1i11sin2θjsinθicosθij=i+1n1sin2θj1r2(j=1i11sin2θj1)sinθicosθij=i+1n1sin2θj=(1r2cosθisinθi)j=1i11sin2θj+(1r2sinθicosθi+1r2sinθicosθi)j=i+1n1sin2θj+(1r2cosθisinθi1r2sinθicosθi1r2sinθicosθi)j=1i11sin2θjj=i+1n1sin2θj=1r2cosθisinθij=1i11sin2θj1r2(cosθisinθi+2sinθicosθi)j=1i11sin2θjj=i+1n1sin2θj=1r2j=1i11sin2θjcosθisinθi1r2j=1i11sin2θj(cosθisinθi+2sinθicosθi)j=i+1n1sin2θj

よって,以下の式を得ます.

2xn2=i=1n1sin2θi2r2+i=1n1(1r2j=1i11sin2θjcos2θij=i+1n1sin2θj)2θi2+i=1n1(2rsinθicosθij=i+1n1sin2θj)2rθi+i=1n1j=i+1n1(2r2k=1i11sin2θkcosθisinθicosθjsinθjk=j+1n1sin2θk)2θiθj+(1r1ri=1n1sin2θi)r+i=1n1(1r2j=1i11sin2θjcosθisinθi1r2j=1i11sin2θj(cosθisinθi+2sinθicosθi)j=i+1n1sin2θj)θi

ラプラシアン

Δ=i=1n12xi2+2xn2=i=1n1(j=1i1sin2θjcos2θi2r2+j=1i1(1r2k=1j11sin2θkcos2θjk=j+1i1sin2θkcos2θi)2θj2+1r2j=1i11sin2θjsin2θi2θi2+j=1i1(2rsinθjcosθjk=j+1i1sin2θkcos2θi)2rθj2rsinθicosθi2rθi+j=1i1k=j+1i1(2r2l=1j11sin2θlcosθjsinθjsinθkcosθkl=k+1i1sin2θlcos2θi)2θjθk+j=1i1(2r2k=1j11sin2θkcosθjsinθjsinθicosθi)2θjθi+(1r1rj=1i1sin2θjcos2θi)r+j=1i1(1r2k=1j11sin2θkcosθjsinθj1r2k=1j11sin2θk(cosθjsinθj+2sinθjcosθj)k=j+1i1sin2θkcos2θi)θj+2r2j=1i11sin2θjsinθicosθiθi)=+(i=1n1sin2θi2r2+i=1n1(1r2j=1i11sin2θjcos2θij=i+1n1sin2θj)2θi2+i=1n1(2rsinθicosθij=i+1n1sin2θj)2rθi+i=1n1j=i+1n1(2r2k=1i11sin2θkcosθisinθicosθjsinθjk=j+1n1sin2θk)2θiθj+(1r1ri=1n1sin2θi)r+i=1n1(1r2j=1i11sin2θjcosθisinθi1r2j=1i11sin2θj(cosθisinθi+2sinθicosθi)j=i+1n1sin2θj)θi)=(i=1n1(j=1i1sin2θjcos2θi)+i=1n1sin2θi)2r2=+i=1n1(j=i+1n1(1r2k=1i11sin2θkcos2θik=i+1j1sin2θkcos2θj)+1r2j=1i11sin2θjsin2θi+1r2j=1i11sin2θjcos2θij=i+1n1sin2θj)2θi2=+i=1n1(j=i+1n1(2rsinθicosθik=i+1j1sin2θkcos2θj)2rsinθicosθi+2rsinθicosθij=i+1n1sin2θj)2rθi=+i=1n1j=i+1n1(k=j+1n1(2r2l=1i11sin2θlcosθisinθisinθjcosθjl=j+1k1sin2θlcos2θk)2r2k=1i11sin2θkcosθisinθisinθjcosθj+2r2k=1i11sin2θkcosθisinθisinθjcosθjk=j+1n1sin2θk)2θiθj=+(i=1n1(1r1rj=1i1sin2θjcos2θi)+(1r1ri=1n1sin2θi))r=+i=1n1(j=i+1n1(1r2k=1i11sin2θkcosθisinθi1r2k=1i11sin2θk(cosθisinθi+2sinθicosθi)k=i+1j1sin2θkcos2θj)+2r2j=1i11sin2θjsinθicosθi+1r2j=1i11sin2θjcosθisinθi1r2j=1i11sin2θj(cosθisinθi+2sinθicosθi)j=i+1n1sin2θj)θi

偏微分の種類ごとに,係数を計算します.

2r2

2r2の係数は
=i=1n1(j=1i1sin2θjcos2θi)+i=1n1sin2θi=i=1n1(j=1i1sin2θj(1sin2θi))+i=1n1sin2θi=i=1n1(j=1i1sin2θjj=1isin2θj)+i=1n1sin2θi=(1i=1n1sin2θi)+i=1n1sin2θi=1

2θi2 (1in1)

2θi2の係数は
=j=i+1n1(1r2k=1i11sin2θkcos2θik=i+1j1sin2θkcos2θj)+1r2j=1i11sin2θjsin2θi+1r2j=1i11sin2θjcos2θij=i+1n1sin2θj=1r2j=1i11sin2θj(j=i+1n1(cos2θik=i+1j1sin2θkcos2θj)+sin2θi+cos2θij=i+1n1sin2θj)=1r2j=1i11sin2θj(cos2θij=i+1n1(k=i+1j1sin2θk(1sin2θj))+sin2θi+cos2θij=i+1n1sin2θj)=1r2j=1i11sin2θj(cos2θij=i+1n1(k=i+1j1sin2θkk=i+1jsin2θk)+sin2θi+cos2θij=i+1n1sin2θj)=1r2j=1i11sin2θj(cos2θi(1j=i+1n1sin2θj)+sin2θi+cos2θij=i+1n1sin2θj)=1r2j=1i11sin2θj(cos2θi+sin2θi)=1r2j=1i11sin2θj

2rθi (1in1)

2rθiの係数は
=j=i+1n1(2rsinθicosθik=i+1j1sin2θkcos2θj)2rsinθicosθi+2rsinθicosθij=i+1n1sin2θj=2rsinθicosθi(j=i+1n1(k=i+1j1sin2θkcos2θj)1+j=i+1n1sin2θj)=2rsinθicosθi(j=i+1n1(k=i+1j1sin2θk(1sin2θj))1+j=i+1n1sin2θj)=2rsinθicosθi(j=i+1n1(k=i+1j1sin2θkk=i+1jsin2θk)1+j=i+1n1sin2θj)=2rsinθicosθi(1j=i+1n1sin2θj1+j=i+1n1sin2θj)=0

2θiθj (1i<jn1)

2θiθjの係数は
=k=j+1n1(2r2l=1i11sin2θlcosθisinθisinθjcosθjl=j+1k1sin2θlcos2θk)2r2k=1i11sin2θkcosθisinθisinθjcosθj+2r2k=1i11sin2θkcosθisinθisinθjcosθjk=j+1n1sin2θk=2r2k=1i11sin2θkcosθisinθisinθjcosθj(k=j+1n1(l=j+1k1sin2θlcos2θk)1+k=j+1n1sin2θk)=2r2k=1i11sin2θkcosθisinθisinθjcosθj(k=j+1n1(l=j+1k1sin2θl(1sin2θk))1+k=j+1n1sin2θk)=2r2k=1i11sin2θkcosθisinθisinθjcosθj(k=j+1n1(l=j+1k1sin2θll=j+1ksin2θl)1+k=j+1n1sin2θk)=2r2k=1i11sin2θkcosθisinθisinθjcosθj(1k=j+1n1sin2θk1+k=j+1n1sin2θk)=0

r

rの係数は
=i=1n1(1r1rj=1i1sin2θjcos2θi)+(1r1ri=1n1sin2θi)=nr1ri=1n1(j=1i1sin2θjcos2θi)1ri=1n1sin2θi=nr1ri=1n1(j=1i1sin2θj(1sin2θi))1ri=1n1sin2θi=nr1ri=1n1(j=1i1sin2θjj=1isin2θj)1ri=1n1sin2θi=nr1r(1i=1n1sin2θi)1ri=1n1sin2θi=nr1r=n1r

θi (1in1)

θiの係数は
=j=i+1n1(1r2k=1i11sin2θkcosθisinθi1r2k=1i11sin2θk(cosθisinθi+2sinθicosθi)k=i+1j1sin2θkcos2θj)+2r2j=1i11sin2θjsinθicosθi+1r2j=1i11sin2θjcosθisinθi1r2j=1i11sin2θj(cosθisinθi+2sinθicosθi)j=i+1n1sin2θj=1r2j=1i11sin2θj(j=i+1n1(cosθisinθi(cosθisinθi+2sinθicosθi)k=i+1j1sin2θkcos2θj)+2sinθicosθi+cosθisinθi(cosθisinθi+2sinθicosθi)j=i+1n1sin2θk)=1r2j=1i11sin2θj((ni1)cosθisinθi+(cosθisinθi+2sinθicosθi)(j=i+1n1(k=i+1j1sin2θkcos2θj)+1j=i+1n1sin2θk))=1r2j=1i11sin2θj((ni1)cosθisinθi+(cosθisinθi+2sinθicosθi)(j=i+1n1(k=i+1j1sin2θk(1sin2θj))+1j=i+1n1sin2θk))=1r2j=1i11sin2θj((ni1)cosθisinθi+(cosθisinθi+2sinθicosθi)(j=i+1n1(k=i+1j1sin2θkk=i+1jsin2θk)+1j=i+1n1sin2θk))=1r2j=1i11sin2θj((ni1)cosθisinθi+(cosθisinθi+2sinθicosθi)(1+j=i+1n1sin2θj+1j=i+1n1sin2θk))=1r2j=1i11sin2θj(ni1)cosθisinθi

よって,以下の式を得ます.
Δ=2r2+i=1n1(1r2j=1i11sin2θj)2θi2+n1rr+i=1n11r2j=1i11sin2θj(ni1)cosθisinθiθi=2r2+n1rr+i=1n11r2j=1i11sin2θj(2θi2+(ni1)cosθisinθiθi)

投稿日:2024810
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

SSRS
SSRS
4
1453

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中
  1. 1階微分
  2. 2階微分(x1,x2,,xn1)
  3. 2階微分(xn)
  4. ラプラシアン