前回 、超微分の定義について軽く触れましたが、今回はそれをより詳しく定義し、付随する定理、公式も証明しようと思います。
この時、
を
いきなり前回と違う話から始めるので少し困惑された方もいるかもしれません。
しかし、微分を習った時のことを考えると、微分係数から習ったと思いませんか。教科書
ということで微分係数の発展版の、超微分係数の定義から始めることとします。
それを踏まえたうえで、前回と異なるところは、初めの1文ですね。
これは、
「それなら、任意の
この時、
を
ここまでは微分の定義と同様の流れになっています。
これ以上説明することはないと思うので次に進みます。
この定理は、見ての通り、
この時、
一番の問題となってくるこの定理にやってきました。
この定理が成り立つことを証明するには、L'hopitalの定理が使えるかどうかの条件を考えなくてはいけません。
その条件とは、
より、成立することがわかります。
狭義超微分可能
微分可能
狭義超微分可能
1.は、最も基本的な関数であるため、初めに扱いました。また、この後の考察で重要になってきます。
2.は定理4の証明で使う他、指数関数やテトレーションの超微分でも重要となってきます。
この定理は、和、積の微分の公式に対応するものです。積の超微分の公式はただの和ですが、冪の超微分の公式は少し形が複雑です。
また、冪の指数部分にある関数は微分可能という条件も付いています。
ここで、
合成関数の超微分は合成関数の微分と同じ形になります。わかりやすいですね。
今回は超微分の定義をし、定理を証明していきました。できるだけ厳密に証明しようとしましたが、論理的なほころびがありましたら、お知らせください。
また、次回は超微分の意味を考察したいと思います。