S3の自己同型群を求めます.
S3の自己同型群はS3に同型である.
S3={e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}である.g∈S3に対しgに対応する内部自己同型をσgと表す.σ(1 2)((1 3))=(2 3)σ(1 2)((2 3))=(1 3)σ(1 3)((1 2))=(2 3)σ(1 3)((2 3))=(1 2)σ(2 3)((1 2))=(1 3)σ(2 3)((1 3))=(1 2)よってS3の互換は内部自己同型の作用により{(1 2), (1 3), (2 3)}に互換を引き起こし, 全ての互換を尽くす. S3は互換で生成されるから自己同型はこれらの値で定まる.よって自己同型群はS3に同型である.
σ(1 2)((1 3))は(1 3)の1を2で置き換えたものになっていますが, これは一般の場合も同様です.例えばσ(1 3 2)((1 2))=(1 3)では(1 2)において1を3に, 2を1に置き換えたものが値になっています.知られている事実として, 対称群の自己同型群はn=6の場合を除いて内部自己同型群に一致します.
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。