級数botII の級数をまとめます。
1π=∑0≤n(6n+1)(2nn)328n+21π=∑0≤n(42n+5)(2nn)3212n+41π2=∑0≤n(−1)n(20n2+8n+1)(2nn)5212n+31π2=∑0≤n(−1)n(820n2+180n+13)(2nn)5220n+7
ζ(2)=∑0<m,n(m−1)!(n−1)!(n+m)!ζ(2)=3∑0<n1n2(2nn)ζ(2)=74∑0<n1n2(3nn)+∑0≤n1(2n+1)2(3n+1n)ζ(2)=23∑0<n(2nn)22nn∑k=0n−112k+1ζ(2)=53∑0≤n(−1)n(2nn)24n(2n+1)2ζ(2)=∑0<n21n−8n3(2nn)3ζ(2)=13∑0<n24n(3n−1)n3(2nn)3ζ(2)=13∑0≤n24n(5n−1)n3(2nn)(4n2n)2+163∑0≤n24n(2n+1)2(2nn)(4n+22n+1)
ζ(3)=8∑0<m<n(−1)nmn2ζ(3)=3∑0<m<n1mn2(2nn)+2∑0<n1n3(2nn)ζ(3)=13∑0<m,n(m−1)!(n−1)!(n+m)!∑k=1n+m1kζ(3)=23∑0<m<n(2nn)22nm2nζ(3)=17∑0<m<n22nmn2(2nn)ζ(3)=52∑0<n(−1)n−1n3(2nn)ζ(3)=∑0<n1n2(2nn)∑k=12n1k+23∑0<n1n3(2nn)ζ(3)=2π7∑0≤m≤n(2mm)224m(2n+1)2ζ(3)=8∑0<m<n<r≤2n(2nn)22nmnrζ(3)=9∑0<m<n(2mm)mn2(2nn)ζ(3)=1516∑0<n(−1)n−1n2(2nn)∑k=12n1k+58∑0≤n(−1)n(2n+1)2(2nn)∑k=12n+11kζ(3)=54∑0<n(−1)nn3(2nn)(3mn)+∑0≤n(−1)n(2n+1)3(2nn)(3n+1n)ζ(3)=128∑0<n(−1)n−128n(10n2−6n+1)n5(2nn)5ζ(3)=12∑0<n(−1)n−1(205n2−160n+32)n5(2nn)5ζ(3)=114∑0<n1n3(2nn)2+12∑0≤n1(2n+1)3(2nn)2
ζ(4)=4∑0<m<n1mn3ζ(4)=45∑0<m<n<r1mnr(r−m)ζ(4)=87∑0<m<n<r1mnr(m+r)ζ(4)=817∑0<m,n(m−1)!(n−1)!(m+n)!∑k=1m+n1k2ζ(4)=3617∑0<n1n4(2nn)ζ(4)=∑0<n(−1)nn4(2nn)−103∑0<m≤n(−1)nmn3(2nn)ζ(4)=4∑0<m<n(2mm)m2n2(2nn)+12∑0<m<n<r(2nn)mnr2(2rr)ζ(4)=32∑0<n(−1)nn4(2nn)(3nn)+43∑0≤n(−1)n(2n+1)4(2nn)(3n+1n)
ζ(5)=∑0<m<n<r1m2n(r−m)2ζ(5)=12∑0<m<n<r<s1mnrs(s−r+n−m)ζ(5)=2∑0<n(−1)n−1n5(2nn)+52∑0<m<n(−1)nm2n3(2nn)
ζ(6)=48∑0<m<n<r1n3r2(r−m)
β(2)=12∑0≤n22n(2n+1)2(2nn)β(2)=12∑0≤m≤n2n(2m+1)(2n+1)(2nn)β(2)=12∑0<m<n2m+nmn(2nn)β(2)=π4∑0≤n(2nn)224n(2n+1)β(2)=3π4∑0≤m<n24m−8n(6n+1)(2nn)3(2m+1)2(2mm)
∑0<n(2nn)22nn2=π26−2log22∑0<n22nn3(2nn)=π2log2−72ζ(3)∑0≤n1(2n+1)2(2nn)=83β(2)−π3log(2+3)∑0≤n(−1)n(2n+1)2(2nn)=π26−3log2(1+52)∑0≤n(2nn)24n(2n+1)2=32(1+122−142−152+172+182−⋯)∑0≤n(2nn)24n(2n+1)3=7π3216∑0≤m≤n(2nn)23n(2m+1)(2n+1)=3π42log2∑0<m<n22n−2m(2mm)mn2(2nn)=π2log2−72ζ(3)π∑0<n(2nn)224nn=4πlog2−8β(2)∑0<n(24nn2(2nn)2−πn)=4πlog2−8β(2)∑0<n24nn3(2nn)2=8πlog2−14ζ(3)∑0<n33nn3(2nn)(3nn)=93π(1−122+142−152+⋯)−26ζ(3)∑0<n22n(3nn)33nn=3log32∑0<n(3nn)(6n3n)22n33nn(2nn)=log(3−3)62∑0≤n22n(3n+1n)33n(2n+1)=334log(2+3)∑0<n12nn2(3nn)=π224−12log22∑0<n33n22nn2(3nn)=23π2−2log23∑0<n28n33nn2(4nn)=34(π2−2log23+arctan2427)∑0<n(4n2n)22nn2(2nn)=π26−log2(1+22)+2Li2(1−22)∑0≤n(2nn)326n=πΓ(34)4∑0<n26nn3(2nn)3=8π∑0≤2n<m(2nn)224n(4n+1)(−1)m−1m∑0≤n(−1)n(2nn)22n(4n+1)3=Γ(14)416π(β(2)+π28)
∑0<m,n1mn(m!n!(m+n)!)2=π26−(1+122−142−152+172+182−⋯)∑0<m,n,r(m−1)!(n−1)!(r−1)!(m+n+r)!=134ζ(3)−π22log2?=∑0≤n22n(4n+1)2(2nn)
∑n∈Ze−πn2=π4Γ(34)
∑n,m∈Z1coshπn+isinhπn=πΓ(34)4
∑0<nn3e2πn−1=π2320Γ(34)8−1240∑0<nn5e2πn−1=1504
∑0<n(−1)n−1nsinhπn=14π
∑k=0n−11sin2(x+πkn)=n2sin2nx
(q;q)∞(−q;q)∞=∑n∈Z(−1)nqn21(q;q)∞=∑0≤nqn2(q;q)n21(q,q4;q5)∞=∑0≤nqn2(q;q)n1(q2,q3;q5)∞=∑0≤nqn(n+1)(q;q)n(q2;q2)∞(q;q2)∞=∑0<nq(n2)(q;q)∞3=∑0<n(−1)n−1(2n−1)q(n2)∑0<m<n(−1)nq(n2)(1−qm)(q;q)n=∑0<nnqn1−qn ∑0<m<nqn(1−qm)(1−qm)2=∑0<nq2n(1−qn)3
∑0<nn!n2(x)n=∑0≤n1(n+x)2∑0≤m<n(x)mm!1(m+x)(n+x)2n!(x)n=∑0≤n1(n+x)3∑0≤n(2x)nn!(−1)n(n+x)2=2−2x∑0≤n1(n+x)2(12+x)n(x)n2∑0≤n(2x)nn!(−1)n(n+x)3=Γ(x)2Γ(2x)∑0≤n1(n+x)22∑0≤n(−1)nn+xn!(2x)n=∑0≤n(x)n(n+x)(2x)n
∑n=1p−11n=0(mod p2)∑n=1p−121n=−2(2p−1−1)p(mod p)∑n=1p−1Fnn=0(mod p)∑n=1p−1(2nn)n=0(mod p)Fp−(5p)p=15∑n=1p−1(−1)n−1(2nn)n(mod p)
ζ(s)=1s−1∑0<n1n∑k=1n(−1)k−1ks−1(n−1k−1)
γ=∑1<n(−1)nnζ(n)γ=∑0<n1n∑k=1n(−1)k(n−1k−1)logk
∑0<n1<⋯<nr1n12⋯nr2=π2r(2r+1)!
∑0<n(2nn)22nnxn=2log(21+1−x)
(2arcsinx)2r(2r)!=∑0<n1<⋯<nr22nrn12⋯nr2(2nrnr)x2nr(2arcsinx)2r−1(2r−1)!=∑0≤n1<⋯<nr(2nrnr)22nr(n1+12)2⋯(nr−1+12)2(nr+12)x2nr+1
∑0≤k(−1)k22k(n−k−1k)xk=11−x((1+1−x2)n−(1−1−x2)n)(∑k=0n(−1)k(nk)(n+kk)xk)2=∑k=0n(−1)k(nk)(n+kk)(2kk)xk(1−x)k
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。