Watsonによる${}_8\phi_7$の$q$-Whippleの変換公式
\begin{align}
\Q87{a,\sqrt aq,-\sqrt aq,b,c,d,e,q^{-n}}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq^{n+1}}{\frac{a^2q^{n+2}}{bcde}}&=\frac{(aq,aq/de)_n}{(aq/d,aq/e;q)_n}\Q43{aq/bc,d,e,q^{-n}}{aq/b,aq/c,deq^{-n}/a}q\\
\end{align}
の一般的となる, non-terminating $q$-Whippleの変換公式を示す.
\begin{align} &\Q87{a,\sqrt aq,-\sqrt aq,b,c,d,e,f}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq/f}{\frac{a^2q^2}{bcdef}}\\ &=\frac{(aq,aq/de,aq/df,aq/ef;q)_{\infty}}{(aq/d,aq/e,aq/f,aq/def;q)_{\infty}}\Q43{aq/bc,d,e,f}{aq/b,aq/c,def/a}{q}\\ &\qquad+\frac{(aq,aq/bc,d,e,f,a^2q^2/bdef,a^2q^2/cdef;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,a^2q^2/bcdef,def/aq;q)_{\infty}}\Q43{aq/de,aq/df,aq/ef,a^2q^2/bcdef}{a^2q^2/bdef,a^2q^2/cdef,aq^2/def}{q} \end{align}
$w=a^2q/bcd, a^3q^{n+2}=bcdefg$とする.
Baileyのterminating${}_{10}\phi_9$変換公式
\begin{align}
&\Q{10}9{a,\sqrt aq,-\sqrt aq,b,c,d,e,f,g,q^{-n}}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq/f,aq/g,aq^{n+1}}{q}\\
&=\frac{(aq,aq/ef,wq/e,wq/f;q)_n}{(aq/e,aq/f,wq,wq/ef;q)_n}\Q{10}9{w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n}}{\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1}}{q}
\end{align}
において, $a,c,d,e,f,g$を固定して$n\to \infty$とする. $b=a^3q^{n+2}/cdefg, w=efgq^{-n-1}/a$となるから,
\begin{align}
&\Q87{a,\sqrt aq,-\sqrt aq,c,d,e,f,g}{\sqrt a,-\sqrt a,aq/c,aq/d,aq/e,aq/f,aq/g}{\frac{a^2q^2}{cdefg}}\\
&=\lim_{n\to\infty}\frac{(aq,aq/ef,fgq^{-n}/a,egq^{-n}/a;q)_n}{(aq/e,aq/f,gq^{-n}/a,efgq^{-n}/a)_n}\Q{10}9{w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n}}{\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1}}{q}\\
&=\frac{(aq,aq/ef,aq/eg,aq/fg;q)_{\infty}}{(aq/e,aq/f,aq/g,aq/efg;q)_{\infty}}\lim_{n\to\infty}\Q{10}9{w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n}}{\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1}}{q}
\end{align}
$n$を奇数として, $n=2m+1$とすると,
\begin{align}
&=\lim_{n\to\infty}\Q{10}9{w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n}}{\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1}}{q}\\
&=\lim_{n\to\infty}\sum_{k=0}^m\frac{(w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n};q)_k}{(\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1},q;q)_k}q^k\\
&\qquad +\lim_{n\to\infty}\sum_{k=0}^m\frac{(w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n};q)_{n-k}}{(\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1},q;q)_{n-k}}q^{n-k}\\
\end{align}
最初の項は,
\begin{align}
&\lim_{n\to\infty}\sum_{k=0}^m\frac{(w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n};q)_k}{(\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1},q;q)_k}q^k\\
&=\lim_{n\to\infty}\sum_{k=0}^m\frac{(efgq^{-n-1}/a,\sqrt{w}q,-\sqrt {w}q,aq/cd,cefgq^{-n-1}/a^2,defgq^{-n-1}/a^2,e,f,g,q^{-n};q)_k}{(\sqrt{w},-\sqrt w,cdefgq^{-n-1}/a^2,aq/c,aq/d,fgq^{-n}/a,egq^{-n}/a,efq^{-n}/a,efg/a,q;q)_k}q^k\\
&=\sum_{k=0}^{\infty}\frac{(aq/cd,e,f,g;q)_k}{(aq/c,aq/d,efg/a,q;q)_k}q^k
\end{align}
であり, 次の項は,
\begin{align}
&\lim_{n\to\infty}\sum_{k=0}^m\frac{(w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n};q)_{n-k}}{(\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1},q;q)_{n-k}}q^{n-k}\\
&\lim_{n\to\infty}\frac{(w,\sqrt wq,-\sqrt wq,wb/a,wc/a,wd/a,e,f,g,q^{-n};q)_n}{(\sqrt w,-\sqrt w,aq/b,aq/c,aq/d,wq/e,wq/f,wq/g,wq^{n+1},q;q)_n}q^n\\
&\qquad \cdot \sum_{k=0}^m\frac{(q^{1-n}/\sqrt w,-q^{1-n}/\sqrt w, bq^{-n}/a,cq^{-n}/a,dq^{-n}/a,eq^{-n}/w,fq^{-n}/w,gq^{-n}/w,q^{-2n}/w,q^{-n};q)_k}{(q^{1-n}/w,q^{-n}/\sqrt w,-q^{-n}/\sqrt w,aq^{1-n}/wb,aq^{1-n}/wc,aq^{1-n}/wd,q^{1-n}/e,q^{1-n}/f,q^{1-n}/g,q;q)_k}q^k
\end{align}
係数の部分は,
\begin{align}
&\lim_{n\to\infty}\frac{(efgq^{-n-1}/a,\sqrt wq,-\sqrt wq,aq/cd,cefgq^{-n-1}/a^2,defgq^{-n-1}/a^2,e,f,g,q^{-n};q)_n}{(\sqrt w,-\sqrt w,cdefgq^{-n-1}/a^2,aq/c,aq/d,fgq^{-n}/a,egq^{-n}/a,efq^{-n}/a,efg/a,q;q)_n}q^n\\
&=\lim_{n\to\infty}\frac{1-efgq^{n-1}/a}{q^n-efg/aq}\frac{(aq^2/efg,aq/cd,a^2q^2/cefg,a^2q^2/defg,e,f,g;q)_n}{(a^2q^2/cdefg,aq/c,aq/d,aq/fg,aq/eg,aq/ef,efg/a;q)_n}\\
&=-\frac{aq}{efg}\frac{(aq^2/efg,aq/cd,a^2q^2/cefg,a^2q^2/defg,e,f,g;q)_{\infty}}{(a^2q^2/cdefg,aq/c,aq/d,aq/fg,aq/eg,aq/ef,efg/a;q)_{\infty}}\\
&=\frac{(aq/efg,aq/cd,a^2q^2/cefg,a^2q^2/defg,e,f,g;q)_{\infty}}{(a^2q^2/cdefg,aq/c,aq/d,aq/fg,aq/eg,aq/ef,efg/aq;q)_{\infty}}
\end{align}
であり,
\begin{align}
&\lim_{n\to\infty}\sum_{k=0}^m\frac{(q^{1-n}/\sqrt w,-q^{1-n}/\sqrt w, bq^{-n}/a,cq^{-n}/a,dq^{-n}/a,eq^{-n}/w,fq^{-n}/w,gq^{-n}/w,q^{-2n}/w,q^{-n};q)_k}{(q^{1-n}/w,q^{-n}/\sqrt w,-q^{-n}/\sqrt w,aq^{1-n}/wb,aq^{1-n}/wc,aq^{1-n}/wd,q^{1-n}/e,q^{1-n}/f,q^{1-n}/g,q;q)_k}q^k\\
&=\lim_{n\to\infty}\sum_{k=0}^m\frac{(q^{1-n}/\sqrt w,-q^{1-n}/\sqrt w, a^2q^2/cdefg,cq^{-n}/a,dq^{-n}/a,aq/fg,aq/eg,aq/ef,aq^{1-n}/efg,q^{-n};q)_k}{(aq^2/efg,q^{-n}/\sqrt w,-q^{-n}/\sqrt w,cdq^{-n}/a,a^2q^{2}/cefg,a^2q^{2}/defg,q^{1-n}/e,q^{1-n}/f,q^{1-n}/g,q;q)_k}q^k\\
&=\sum_{k=0}^{\infty}\frac{(a^2q^2/cdefg,aq/fg,aq/eg,aq/ef;q)_k}{(aq^2/efg,a^2q^{2}/cefg,a^2q^{2}/defg,q;q)_k}q^k\\
\end{align}
よってこれらを合わせると,
\begin{align}
&\Q87{a,\sqrt aq,-\sqrt aq,c,d,e,f,g}{\sqrt a,-\sqrt a,aq/c,aq/d,aq/e,aq/f,aq/g}{\frac{a^2q^2}{cdefg}}\\
&=\frac{(aq,aq/ef,aq/eg,aq/fg;q)_{\infty}}{(aq/e,aq/f,aq/g,aq/efg;q)_{\infty}}\sum_{k=0}^{\infty}\frac{(aq/cd,e,f,g;q)_k}{(aq/c,aq/d,efg/a,q;q)_k}q^k\\
&\qquad +\frac{(aq,aq/ef,aq/eg,aq/fg;q)_{\infty}}{(aq/e,aq/f,aq/g,aq/efg;q)_{\infty}}\frac{(aq/efg,aq/cd,a^2q^2/cefg,a^2q^2/defg,e,f,g;q)_{\infty}}{(a^2q^2/cdefg,aq/c,aq/d,aq/fg,aq/eg,aq/ef,efg/aq;q)_{\infty}}\\
&\qquad\qquad\cdot\sum_{k=0}^{\infty}\frac{(a^2q^2/cdefg,aq/fg,aq/eg,aq/ef;q)_k}{(aq^2/efg,a^2q^{2}/cefg,a^2q^{2}/defg,q;q)_k}q^k\\
&=\frac{(aq,aq/ef,aq/eg,aq/fg;q)_{\infty}}{(aq/e,aq/f,aq/g,aq/efg;q)_{\infty}}\sum_{k=0}^{\infty}\frac{(aq/cd,e,f,g;q)_k}{(aq/c,aq/d,efg/a,q;q)_k}q^k\\
&\qquad +\frac{(aq,aq/cd,a^2q^2/cefg,a^2q^2/defg,e,f,g;q)_{\infty}}{(aq/c,aq/d,aq/e,aq/f,aq/g,a^2q^2/cdefg,efg/aq;q)_{\infty}}\\
&\qquad\qquad\cdot\sum_{k=0}^{\infty}\frac{(a^2q^2/cdefg,aq/fg,aq/eg,aq/ef;q)_k}{(aq^2/efg,a^2q^{2}/cefg,a^2q^{2}/defg,q;q)_k}q^k\\
\end{align}
となる. 文字を置き換えることによって定理を得る.
定理1は,
\begin{align}
&\Q87{a,\sqrt aq,-\sqrt aq,b,c,d,e,f}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq/f}{\frac{a^2q^2}{bcdef}}\\
&=\frac{(aq,aq/de,aq/df,aq/ef;q)_{\infty}}{(aq/d,aq/e,aq/f,aq/def;q)_{\infty}}\Q43{aq/bc,d,e,f}{aq/b,aq/c,def/a}{q}\\
&\qquad+\frac{(aq,aq/bc,d,e,f,a^2q^2/bdef,a^2q^2/cdef;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,a^2q^2/bcdef,def/aq;q)_{\infty}}\Q43{aq/de,aq/df,aq/ef,a^2q^2/bcdef}{a^2q^2/bdef,a^2q^2/cdef,aq^2/def}{q}\\
&=\frac{(aq,aq/bc,d,e,f,aq/de,aq/df,aq/ef;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,aq/def,def/a,q;q)_{\infty}}\sum_{0\leq n}\frac{(aq^{n+1}/b,aq^{n+1}/c,defq^n/a,q^{n+1};q)_{\infty}}{(aq^{n+1}/bc,dq^n,eq^n,fq^n;q)_{\infty}}q^n\\
&\qquad+\frac{(aq,aq/bc,d,e,f,aq/de,aq/df,aq/ef;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,def/aq,aq^2/def;q)_{\infty}}\sum_{0\leq n}\frac{(a^2q^{n+2}/bdef,a^2q^{n+2}/cdef,aq^{n+2}/def,q^{n+1};q)_{\infty}}{(aq^{n+1}/de,aq^{n+1}/df,aq^{n+1}/ef,a^2q^{n+2}/bcdef;q)_{\infty}}q^n\\
&=\frac{aq-def}{aqdef}\frac{(aq,aq/bc,d,e,f,aq/de,aq/df,aq/ef;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,aq/def,def/aq,q;q)_{\infty}}\\
&\qquad\cdot\left(def\sum_{0\leq n}\frac{(aq^{n+1}/b,aq^{n+1}/c,defq^n/a,q^{n+1};q)_{\infty}}{(aq^{n+1}/bc,dq^n,eq^n,fq^n;q)_{\infty}}q^n-aq\sum_{0\leq n}\frac{(a^2q^{n+2}/bdef,a^2q^{n+2}/cdef,aq^{n+2}/def,q^{n+1};q)_{\infty}}{(aq^{n+1}/de,aq^{n+1}/df,aq^{n+1}/ef,a^2q^{n+2}/bcdef;q)_{\infty}}q^n\right)\\
&=\frac{1}{def-aq}\frac{(aq,aq/bc,d,e,f,aq/de,aq/df,aq/ef;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,aq^2/def,def/a,q;q)_{\infty}}\int_{aq}^{def}\frac{(atq/bdef,atq/cdef,tq/def,t/a;q)_{\infty}}{(t/de,t/df,t/ef,atq/bcdef;q)_{\infty}}\,d_qt
\end{align}
と書くことができる. ここで, $q$積分は
\begin{align}
\int_a^bf(t)\,d_qt:=\sum_{0\leq n}(bq^nf(bq^n)-aq^nf(aq^n))
\end{align}
によって定義されるとする.