これも備忘録だ.もし証明が必要ならこれをコピペする気だ.
ベクトル値関数$\bm{a}_1(s),\bm{a}_2(s),\bm{a}_3(s)$と関数$f(s),g(s),h(s)$に対して
$$\qty{\qty(\bm{a}_1,\bm{a}_2,\bm{a}_3)\vecTri{f}{g}{h}}' = qty(\bm{a}_1,\bm{a}_2,\bm{a}_3)'\vecTri{f}{g}{h} + \qty(\bm{a}_1,\bm{a}_2,\bm{a}_3)\vecTri{f}{g}{h}'$$
力業だ.
$$\begin{array}{rcl}
\qty{\qty(\bm{a}_1,\bm{a}_2,\bm{a}_3)\vecTri{f}{g}{h}}' &=& \qty(f\bm{a}_1+g\bm{a}_2+h\bm{a}_3)' \\
&=& f'\bm{a}_1+g'\bm{a}_2+h'\bm{a}_3 + f\bm{a}_1'+g\bm{a}_2'+h\bm{a}_3'\\
&=& \qty(\bm{a}_1,\bm{a}_2,\bm{a}_3)'\vecTri{f}{g}{h} + \qty(\bm{a}_1,\bm{a}_2,\bm{a}_3)\vecTri{f}{g}{h}'
\end{array}$$
曲線$\gamma(s)$とせれ・フレネ枠$\{\bm{t},\bm{n},\bm{b}\}$に対して曲線上のベクトル場
$$X(s)=f(s)\bm{t}+g(s)\bm{n}+h(s)\bm{b}$$
の発散は
$$\begin{array}{rcl}
\grad\cdot X(s) &=&\d \qty(\frac{\partial \gamma}{\partial x}\frac{d}{ds} + \frac{\partial \gamma}{\partial y}\frac{d}{ds} + \frac{\partial \gamma}{\partial z}\frac{d}{ds})\qty(\qty(\bm{t},\bm{n},\bm{b})\vecTri{f}{g}{h})\\
&=& \d (\bm{e}_1,\bm{e}_2,\bm{e}_3)\qty(\frac{\partial \gamma}{\partial x}, \frac{\partial \gamma}{\partial y}, \frac{\partial \gamma}{\partial z})\cdot\qty{\qty(\bm{t},\bm{n},\bm{b})'\vecTri{f}{g}{h} + \qty(\bm{t},\bm{n},\bm{b}) \vecTri{f}{g}{h}'}\\
&=& \d (\bm{e}_1,\bm{e}_2,\bm{e}_3)\qty(\frac{\partial \gamma}{\partial x}, \frac{\partial \gamma}{\partial y}, \frac{\partial \gamma}{\partial z})\cdot\qty{\qty(\bm{t},\bm{n},\bm{b})\qty(\qty(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array})^t - \qty(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}))\vecTri{f}{g}{h}}
\end{array}$$
また$\bm{t} = \bm{a}_1$,$\bm{t} = \bm{a}_2$,$\bm{t} = \bm{a}_3$としたとき(特に意味はない.僕がタイプミスしただけだ)
$$\begin{array}{rcl}
\bm{e}_1 &=& (\bm{e}_1\cdot\bm{a}_1)\bm{a}_1+(\bm{e}_1\cdot\bm{a}_2)\bm{a}_2+(\bm{e}_1\cdot\bm{a}_3)\bm{a}_3 \\
\bm{e}_2 &=& (\bm{e}_2\cdot\bm{a}_1)\bm{a}_1+(\bm{e}_2\cdot\bm{a}_2)\bm{a}_2+(\bm{e}_2\cdot\bm{a}_3)\bm{a}_3 \\
\bm{e}_3 &=& (\bm{e}_3\cdot\bm{a}_1)\bm{a}_1+(\bm{e}_3\cdot\bm{a}_2)\bm{a}_2+(\bm{e}_3\cdot\bm{a}_3)\bm{a}_3
\end{array}$$
より
$$\vecTri{\bm{e}_1}{\bm{e}_2}{\bm{e}_3} = \qty(\begin{array}{ccc}
(\bm{e}_1\cdot\bm{t}) & (\bm{e}_1\cdot\bm{n}) & (\bm{e}_1\cdot\bm{b})\\
(\bm{e}_2\cdot\bm{t}) & (\bm{e}_2\cdot\bm{n}) & (\bm{e}_2\cdot\bm{b})\\
(\bm{e}_3\cdot\bm{t}) & (\bm{e}_3\cdot\bm{n}) & (\bm{e}_3\cdot\bm{b})\\
\end{array})\vecTri{\bm{t}}{\bm{n}}{\bm{b}} = \vecTri{\bm{e}_1}{\bm{e}_2}{\bm{e}_3}\vecTri{\bm{t}}{\bm{n}}{\bm{b}}({\bm{e}_1,}\ {\bm{e}_2,}\ {\bm{e}_3})$$
よって
$$\begin{array}{rcl}
\grad\cdot X(s) &=& \d (\bm{e}_1,\bm{e}_2,\bm{e}_3)\qty(\frac{\partial \gamma}{\partial x}, \frac{\partial \gamma}{\partial y}, \frac{\partial \gamma}{\partial z})\cdot\qty{\qty(\bm{t},\bm{n},\bm{b})\qty(\qty(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array})^t - \qty(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}))\vecTri{f}{g}{h}}\\
&=& \d \qty(\bm{t},\bm{n},\bm{b})\vecTri{\bm{e}_1}{\bm{e}_2}{\bm{e}_3}({\bm{t}},\ {\bm{n}},\ {\bm{b}})\qty(\frac{\partial \gamma}{\partial x}, \frac{\partial \gamma}{\partial y}, \frac{\partial \gamma}{\partial z})\cdot\qty{\qty(\bm{t},\bm{n},\bm{b})\qty(\qty(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array})^t - \qty(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}))\vecTri{f}{g}{h}}\\
&=& \d \vecTri{\bm{e}_1}{\bm{e}_2}{\bm{e}_3}({\bm{t}},\ {\bm{n}},\ {\bm{b}})\qty(\frac{\partial \gamma}{\partial x}, \frac{\partial \gamma}{\partial y}, \frac{\partial \gamma}{\partial z})\cdot\qty{\qty(\qty(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array})^t - \qty(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}))\vecTri{f}{g}{h}}
\end{array}$$
以上よりセレ・フレネ行列の固有値が1かが重要ということになる.ちなみにその固有値は$0,\sqrt{-(\kappa^2+\tau^2)}$なためそれは起こらない.