今回はこちらの積分を解説します。
$$\int_0^\infty \frac{\mathrm{d}x}{(\pi^2+x^2)\cosh{x}}=\frac{2}{\pi}-\frac{1}{2}$$
$$\mathcal{F}_x\big[\exp(-2\pi|x|)\big](\xi)=\frac{1}{\pi}\frac{1}{1+\xi^2}$$
$$ \begin{eqnarray} \int_0^\infty \frac{\mathrm{d}x}{(\pi^2+x^2)\cosh{x}} &=&\frac{1}{\pi}\int_0^\infty \frac{\mathrm{d}x}{(1+x^2)\cosh{\pi x}} \quad(x\mapsto \pi x) \\ &=&\int_0^\infty \mathcal{F}^{-1}\Big[\frac{1}{\pi}\frac{1}{1+x^2}\Big]\mathcal{F}\Big[\frac{1}{\cosh{\pi x}}\Big]\mathrm{d}x \\ &=&\int_0^\infty\frac{\exp(-2\pi|x|)}{\cosh{\pi x}}\mathrm{d}x \quad(\because\text{補題2}) \\ &=&\frac{2}{\pi}\int_0^1\frac{x^2}{\frac{1}{x}+x}\frac{\mathrm{d}x}{x} \quad(\exp(-\pi x)\mapsto x) \\ &=&\frac{2}{\pi}\int_0^1\Big(1-\frac{1}{1+x^2}\Big)\mathrm{d}x \\ &=&\frac{2}{\pi}-\frac{1}{2} \end{eqnarray} $$
過去のものを供養しました