1

メモ 2025-02-25.

141
0
$$$$

くりこみを使った中心極限定理の説明$^{[1]}$と,ラテン語の練習.
(本文は ChatGPT に添削して貰っています)
$\ $
$\ $
$\ $
$\ $
$\ $
$\ $

De Usu Systematis Dynamici in Theoremate Limitis Centralis Demonstrando

Hactenus in multis laboribus fortibus exempla theoriae renormalisationis ostensa sunt, ut nemo qui physica studet earum valores non intellegere possit. Jam in aliquot partibus geometriae usus systematum dynamicorum et eorum renormalisationum latius fieri incepit, sed discipuli geometriae qui istam theoriam amant non multas esse, latenter mihi infelix erat.

In hoc ariticulo praebebo, exemplum quod renormalisatione ad mathesim uti potest. Quamquam haec consideratio est nec nostra intuitione manifesta, nec ad veritatem theoriae probabilitatis rigorose demonstrandum habilis, specimen bonum erit, in quo renormalisatione utimur in contextu mathematicae.

Maxima pars articuli a nota Sébastien Ott $[1]$ citata est, at hic variabiles fortuitas $X,Y$ potius quam mensuris probabilitatis $\nu,\mu$ $(=\mu_X,\mu_Y)$ uti malo.
$\ $
$\ $
$\ $
$$\ast\ \ \ast\ \ \ast$$
$\ $
$\ $
$\ $
Characteres et Vocabuli

$(\Omega,\mathcal{F},P)$ : spatium probabilitatis
$P$ : mensura probabilitatis
$X,Y$ : variabilis fortuita
$F_X$ : functio distributionis variabilis fortuitae $X$
$\quad\Bigl(F_X(x)=P(X\leqslant x)=P\bigl(X^{-1}((-\infty,x])\bigr)\ (x\in\mathbb{R})\Bigr)$
$\mu_X$ : functio densitatis variabilis fortuitae $X$
$\quad\Bigl(\mu_X(x)=F_X'(x)\ (x\in\mathbb{R})\Bigr)$
$E[X]$ : valor expectandum variabilis fortuitae $X$
$\quad\Bigl(E[X]=\int_{-\infty}^\infty x\mu_X(x)dx\Bigr)$
$V[X]$ : latitudo variabilis fortuitae $X$
$\quad\Bigl(V[X]=E[X^2]\Bigr)$
$\varphi_X$ : functio characteristica variabilis fortuitae $X$
$\quad\Bigl(\varphi_X(\xi)=E[e^{iX\xi}]\ (\xi\in\mathbb{R})\Big)$
$\ $
$\ $
$\ $
$$\ast\ \ \ast\ \ \ast$$
$\ $
$\ $
$\ $
Sit $(\Omega,\mathcal{F},P)$ spatium probabilitatis. Si duae variabiles fortuitae $X,Y\;\colon\;\Omega\rightarrow\mathbb{R}$ ad eandem distributionem sequuntur, hoc signo $\sim$ denotabimus
\begin{equation*} X\sim Y, \end{equation*}
atque classes quae hac relatione aequivalente fiant, eisdem notionibus $X,Y,$ totum complexum classium, charactere $\mathcal{V}$ repraesentabimus. Manifesto pro una classe unus valor expectandum et una latitudo determinatur, et additio multiplicatioque variabilium fortuitarum ad classes valorem habere, facile perspici potest.

Cogitamus totum complexum classis variabilis fortuitae quae habet quantitatem motus secundam finitam, et systema dynamicum super eo; hoc complexum per signo
\begin{equation*} \mathcal{P}_2=\{X\in\mathcal{V}\mid E[X^2]<\infty\} \end{equation*}
scribimus, atque totum complexum earum quae habet valorem expectandum $0$ et latitudinem $1,$ per
\begin{equation*} \mathcal{Q}_2=\{X\in\mathcal{P}_2\mid E[X]=0,\ E[X^2]=1\} \end{equation*}
repraesentabimus.

(Propositio 1)

Complexus $\mathcal{Q}_2$ spatium metricum fit cum functione $d_2\;\colon\;\mathcal{Q}_2\times\mathcal{Q}_2\rightarrow[0,\infty)$ constituta per formulam
\begin{equation*} d_2(X,Y)=\sup_{\xi\in\mathbb{R}\setminus\{0\}}\frac{\left|\varphi_X(\xi)-\varphi_Y(\xi)\right|}{\xi^2}\quad (X,Y\in\mathcal{Q}_2), \end{equation*}
ubi $\varphi_X,\varphi_Y$ sunt functiones characteristicae variabilium $X,Y.$

(Demonstratio)

$(1^\circ)$ Probamus initio supremum in definitione functionis $d_2$ valorem finitum esse. Sint $X,Y$ quemcumque classes ad $\mathcal{Q}_2$ pertinentes. Cum $X$ & $Y$ eadem valores expectandos et latitudines habent, videamus
\begin{align*} &\frac{1}{\xi^2}\left|\varphi_X(\xi)-\varphi_Y(\xi)\right|\\ =\;&\frac{1}{\xi^2}\left|E[e^{iX\xi}-1-iX\xi]-E[e^{iY\xi}-1-iY\xi]\right|\\ \leqslant\;&\frac{1}{\xi^2}\left(E\Bigl[\left|e^{iX\xi}-1-iX\xi\right|\Bigr]+E\Bigl[\left|e^{iY\xi}-1-iY\xi\right|\Bigr]\right)\\ \leqslant\;&\frac{1}{\xi^2}\left(E\Bigl[\frac{\,e\,}{\,2\,}X^2\xi^2\Bigr]+E\Bigl[\frac{\,e\,}{\,2\,}Y^2\xi^2\Bigr]\right)=e \end{align*}
quotiens $0<\left|\xi\right|\leqslant1,$ et
\begin{equation*} \frac{1}{\xi^2}\left|\varphi_X(\xi)-\varphi_Y(\xi)\right|<1+1=2 \end{equation*}
quotiens $\left|\xi\right|>1,$ quae producunt $d_2(X,Y)\leqslant e.$

$(2^\circ)$ Si $X,Y$ quaevis classes ad $\mathcal{Q}_2$ pertinentes repraesentant, facile est perspicere
\begin{equation*} d_2(X,Y)=0\Longleftrightarrow\varphi_X=\varphi_Y\Longleftrightarrow X=Y. \end{equation*}
Adeoque valet $d_2(X,Y)=d_2(Y,X)$.

$(3^\circ)$ Inaequalitas triangularis
\begin{equation*} d_2(X,Z)\leqslant d_2(X,Y)+d_2(Y,Z)\quad(X,Y,Z\in\mathcal{Q}_2) \end{equation*}
derivari potest per illas valoris absoluti $\left|\;\cdot\;\right|$ et supremi.

Itaque $d_2$ est functio quae distantiam definit, q. e. f.

(Propositio 2)

$\mathcal{Q}_2$ spatium compactum secundum seriem est.

(Demonstratio

(難しいので省略.後で追記するかも知れません…)

Si ex una classe variabilis $X$ ad $\mathcal{Q}_2$ pertinente, duplicatione duae classes independentes $X_1,X_2$ quae eandem distributionem ac $X$ sequuntur fiant, novam classem $T(X)$ per formulam
\begin{equation*} T(X)=\frac{X_1+X_2}{\sqrt{2}} \end{equation*}
definimus, ut valor expectandum et latitudo classis $X$ invariati maneant; videlicet,
\begin{equation*} T(X)\in\mathcal{Q}_2. \end{equation*}
Haec definitio renormalisatione utitur; scilicet formatio classis $T(X)$ potest ipsa dividi in additionem et divisionem per radicem $\sqrt{2}$, quarum in parte priore ad granulos laxiores reddere, in posteriore res quae remensuratio dicenda est efficitur. Deinde observandi sunt characteres fundamentales novae classis $T(X),$ praesertim duae propositiones sequentes.

(Propositio 3)

Functio $f$ classem $X$ quae ad distributionem normalem $\mathcal{N}(0,1)$ sequitur ut unum punctum fixum habet:
\begin{equation*} T(X)=X. \end{equation*}

...et quidem hoc unum tantum, sicut ostendemus deinde.

(Demonstratio)

Si classes variabilium $X_1,X_2$ datae sunt, independenterque ad distributionem normalem sequitur, probablitas quod nova classis variabilis $T(X)=(X_1+X_2)/\sqrt{2}$ quemdam numerum $x$ excidat in formulam
\begin{align*} P(T(X)\leqslant x)&=\frac{1}{2\pi}\iint_{(x_1+x_2)/\sqrt{2}\leqslant x}e^{(-x_1^2-x_2^2)/2}dx_1dx_2 \end{align*}
scribitur, quae per substitutionem aliarum variabilium $y_1=(x_1+x_2)/\sqrt{2},$ $y_2=(x_1-x_2)/\sqrt{2}$ in hanc:
\begin{align*} &=\frac{1}{2\pi}\int_{-\infty}^\infty\int_{-\infty}^xe^{(-y_1^2-y_2^2)/2}dy_1dy_2=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-y_1^2/2}dy_1 \end{align*}
abit, quae $=P(X\leqslant x)$ scribi potest. Ergo $T(X)$ etiam distributionem normalem seqeui debet, q. e. d.

(Propositio 4)

Si classis $X$ ad distributionem normalem $\mathcal{N}(0,1)$ sequitur, valet $d_2(X,T(Y))< d_2(X,Y),$ quotiens $a=d_2(X,Y)>0.$

(Demonstratio)

Imprimis comparamus
\begin{align*} \varphi_X'(0)&=\left.\frac{d}{d\xi}\int_{-\infty}^\infty e^{ix\xi}f_X(x)dx\right|_{\xi=0}\\ &=\left.\int_{-\infty}^\infty \frac{d}{d\xi}e^{ix\xi}f_X(x)dx\right|_{\xi=0}\\ &=\left.\int_{-\infty}^\infty ixe^{ix\xi}f_X(x)dx\right|_{\xi=0}\\ &=\int_{-\infty}^\infty ixf_X(x)dx\\ &=iE[X]=0,\\ \varphi_X''(0)&=\left.\frac{d^2}{d\xi^2}\int_{-\infty}^\infty e^{ix\xi}f_X(x)dx\right|_{\xi=0}\\ &=\left.\int_{-\infty}^\infty \frac{d^2}{d\xi^2}e^{ix\xi}f_X(x)dx\right|_{\xi=0}\\ &=\left.\int_{-\infty}^\infty -x^2e^{ix\xi}f_X(x)dx\right|_{\xi=0}\\ &=\int_{-\infty}^\infty -x^2f_X(x)dx\\ &=-E[X^2]=-1, \end{align*}
itemque $\varphi_Y'(0)=0$ et $\varphi_Y''(0)=-1.$ Ergo quia theoremate Tayloriano habemus
\begin{equation*} \frac{\left|\varphi_X(\xi)-\varphi_Y(\xi)\right|}{\xi^2}=\frac{\mathrm{O}(\xi^3)}{\xi^2}=\mathrm{O}(\xi) \end{equation*}
ad limitem $\xi\to0,$ existit numerus positivus $\delta$ talis ut inaequalitas
\begin{equation*} \frac{\left|\varphi_X(\xi)-\varphi_Y(\xi)\right|}{\xi^2}<\frac{\,a\,}{\,2\,} \end{equation*}
valeat quotiens $\left|\xi\right|<\delta,$ unde producitur,
\begin{align*} &\frac{\left|E[e^{iT(X)\xi}]-E[e^{iT(Y)\xi}]\right|}{\xi^2}\\ =\;&\frac{\left|E[e^{iX\xi/\sqrt{2}}]-E[e^{iY\xi/\sqrt{2}}]\right|}{\xi^2}\left|E[e^{iX\xi/\sqrt{2}}]+E[e^{iY\xi/\sqrt{2}}]\right|\\ =\;&\frac{\left|E[e^{iX\eta}]-E[e^{iY\eta}]\right|}{\eta^2}\frac{\left|E[e^{iX\eta}]+E[e^{iY\eta}]\right|}{2}\quad(\eta=\xi/\sqrt{2})\\ \leqslant\;&\frac{\,a\,}{\,2\,}\frac{E\Bigl[\left|e^{iX\eta}\right|\Bigr]+E\Bigl[\left|e^{iY\eta}\right|\Bigr]}{2}=\frac{\,a\,}{\,2\,}. \end{align*}
Atque si $\left|\xi\right|\geqslant \delta$ habemus
\begin{align*} &\frac{\left|E[e^{iT(X)\xi}]-E[e^{iT(Y)\xi}]\right|}{\xi^2}\\ =\;&\frac{\left|E[e^{iX\eta}]-E[e^{iY\eta}]\right|}{\eta^2}\frac{\left|E[e^{iX\eta}]+E[e^{iY\eta}]\right|}{2}\quad(\eta=\xi/\sqrt{2})\\ \leqslant\;&a\frac{e^{-\xi^2/2}+1}{2}\\ \leqslant\;&a\frac{e^{-\delta^2/2}+1}{2}. \end{align*}
Itaque
\begin{align*} d_2(X,T(Y))&=d_2(T(X),T(Y))< a, \end{align*}
q. e. f.

(Propositio 5)

Functio $T\;\colon\;\mathcal{Q}_2\rightarrow\mathcal{Q}_2$ continua est.

略.

Igitur videamus senquens

(theorema 6)

Si infinitae variabiles fortuitae $X_1,X_2,\ldots$ dantur, indenpendenter ad eandem distributionem sequuntur, et omnes valorem expectandum $0$ et latitudinem $1$ habent, probabilitas quod summa $X_1+\cdots+X_{2^n}$ divisa per exponentiale $2^{n/2}$ in quodam intervallo $[a,b]$ cadet:
\begin{equation*} P\Bigl(a\leqslant\frac{1}{2^{n/2}}\sum_{i=1}^{2^n}X_i\leqslant b\Bigr), \end{equation*}
ad valorem integralis
\begin{equation*} \frac{1}{\sqrt{2\pi}}\int_a^be^{-\xi^2/2}d\xi \end{equation*}
convergit, cum numerus $n$ ad infinitum augetur.

Quia summa $X_1+\cdots+X_{2^n}$ divisa per $2^{n/2}$ ac variabilem $T^n(X_1)=T(T\cdots(T(X_1)))$ eandem classem pertinet, oportet conspicere quantum ea prope variabilis $X$ sit, quo $X$ variabilem repraesentat quae ad $\mathcal{N}(0,1)$ sequitur. Series distantiae earum:
\begin{equation*} a_n\ \ =\ \ d_2(X,T^n(X_1)),\qquad n\ \ =\ \ 1,\ \ 2,\ \ 3,\ \ \ldots \end{equation*}
certo limite inferiore praeditum esse, atque propositione 4 descrescens esse patet. Ergo exstat numerus nonnegativus $a$ ad quam haec series convergit, cum subserie convergente
\begin{equation*} Y_n\ \ =\ \ T^{\varphi(n)}(X_1),\qquad n\ \ =\ \ 1,\ \ 2,\ \ 3,\ \ \ldots, \end{equation*}
quod est corollarium propositionis 2. Eam limitem per characterem $Y$ notabimus. Tunc quia $T$ functio continua erat, series
\begin{equation*} Z_n\ \ =\ \ T^{\varphi(n)+1}(X_1),\qquad n\ \ =\ \ 1,\ \ 2,\ \ 3,\ \ \ldots \end{equation*}
limitem $Z=T(Y)$ habet. Si $a>0$ posito ostendimus,
\begin{equation*} a=d_2(X,Z)=d_2(X,T(Y))< d_2(X,Y)=a, \end{equation*}
quod est absurdum. Ergo $a=0$ valet, atque $T^n(X_1)$ ad punctum $X$ convergere patet. Igitur ad omne punctum $\xi\in\mathbb{R}$ tam $\xi\neq0$ quam $\xi=0,$
\begin{equation*} \varphi_{T^n(X_1)}(\xi),\qquad n\ \ =\ \ 1,\ \ 2,\ \ 3,\ \ \ldots \end{equation*}
ad $\varphi_X(\xi)=e^{-\xi^2/2}$ convergere necessaris esse perspicitur, tum Theorema Levianum uti licet ad probandum propositionem.

$\ $
$\ $
$\ $
$\ $
$\ $
$\ $
$[1]$ Sébastien Ott, "A note on the renormalization group approach to the Central Limit Theorem" (2023), arXiv:2303.13905.
https://arxiv.org/abs/2303.13905
$\ $
$\ $
$\ $
$\ $
$\ $
$\ $

投稿日:225
更新日:315
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

Yu
Yu
147
14497
好きな整数は 0, 1, 1, φ, 2, 5, 6, 12, 89 など. || フィボナッチ数列 bot (@Aureus_N) 管理人. || hatena blog

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中