$\{ (p\rightarrow q),(p\rightarrow \lnot q) \}\vdash \lnot p$
$(\lnot p)\vdash (p \rightarrow q)$
$(\lnot \neg p)\vdash p$
$\{p,q\} \vdash (p \land q)$
$(p\land q)\vdash p$
$(p\land q)\vdash q$
$p\vdash (p\lor q)$
$q\vdash (p\lor q)$
$\{p\lor q,p\rightarrow r,q\rightarrow r\}\vdash r$
$\{p,p\rightarrow q \}\vdash q$
$(p\vdash q)\vdash (p\rightarrow q)$
$[p]_{(n)}$
$\vdash q$
$\vdash_{(n)} p \rightarrow q$
$q \vdash (p \rightarrow q)$
$\{[p]_{(1)},q \}$
$\vdash q$
$\vdash_{(1)} (p \rightarrow q)$
$\{ p \rightarrow q,\lnot q \}$
$\vdash \lnot p$
$\{ p \rightarrow q , \lnot q \}$
$\vdash \{ p \rightarrow q , p \rightarrow \lnot q \}$
$\vdash \lnot p$
$\vdash \lnot(p \land \lnot p)$
$p \land \lnot p\rightarrow p,p \land \lnot p \rightarrow \lnot p$
$\vdash \lnot(p \land \lnot p)$
$p \lor \lnot p$
$\lnot(p \land \lnot p)$
$\vdash \lnot p \lor \lnot \neg p$(De Morgan's Law)
$\vdash \lnot p \lor p$
$\lnot (p \lor q) \vdash (\lnot p \land \lnot q)$
$[p]_{(1)}$
$\vdash p \lor q$
$\vdash_{(1)} p \rightarrow (p\lor q)$
$[q]_{(2)}$
$\vdash p \lor q$
$\vdash_{(2)} q \rightarrow (p\lor q)$
$\{p \rightarrow (p \lor q) ,\lnot (p \lor q)\} \vdash \lnot p$(Modus tollens)
$\{q \rightarrow (p \lor q) ,\lnot (p \lor q)\} \vdash \lnot q$(Modus tollens)
$\lnot(p\lor q) \vdash (\lnot p \land \lnot q)$
$[p]_{(1)}$
$\vdash r$(arbitary)
$\vdash_{(1)} \lnot p$
$[p]_{(1)}$
$\vdash q$
$\vdash_{(1)} p\rightarrow q$
$[p]_{(2)}$
$\vdash \lnot q$
$\vdash_{(2)} p\rightarrow \lnot q$
$[p]_{(3)}$
$\vdash_{(3)} (p\rightarrow q)\land (p\rightarrow \lnot q)$
$\vdash \lnot p$
$(\lnot p \land \lnot q) \vdash \lnot (p \lor q)$
$(\lnot p \land \lnot q) \vdash \lnot p$
$\lnot p \vdash (p \rightarrow r)$
$(\lnot p \land \lnot q) \vdash \lnot q$
$\lnot q \vdash (q \rightarrow r)$
$\{[p \lor q]_{(1)},(\lnot p\land \lnot q)\}$
$\vdash \{(p\lor q),(p \rightarrow r),(q \rightarrow r) \}$
$\vdash r$(arbitrary)
$\vdash_{(1)} \lnot (p\lor q)$