こんにちは,itouです.積分の問題がいっぱい載ってるpdfを手に入れたので,やっていきます.
\begin{align} \int_{0}^{1}\frac{1}{(1+yx)\sqrt{1-x^2}}dx=\frac{\arccos(y)}{\sqrt{1-y^2}}\quad (y\in(-1,1)) \end{align}
.
.
.
.
.
.
.
.
.
\begin{align} \int_{0}^{1}\frac{1}{(1+yx)\sqrt{1-x^2}}dx&=\int_{0}^{\pi/2}\frac{1}{1+y\sin(t)}dt(x\rightarrow \sin(t))\\ &=\int_{0}^{\pi/2}\frac{(\tan(t/2)')}{\tan^2(t/2)+2y\tan(t/2)+1}dt(半角にして分母分子\cos^2(t/2)で割る)\\ &=2\int_{0}^{1}\frac{1}{u^2+2yu+1}du\quad(\tan(t/2)=u)\\ &=2\int_{0}^{1}\frac{1}{(u+y)^2+(\sqrt{1-y^2})^2}du\\ &=2\int_{y}^{y+1}\frac{1}{t^2+(\sqrt{1-y^2})^2}dt\quad(u+t=t)\\ &=\frac{2}{\sqrt{1-y^2}}\left(\arctan(\frac{y+1}{\sqrt{1-y^2}})-\arctan(\frac{y}{\sqrt{1-y^2}})\right)\\ &=\frac{2}{\sqrt{1-y^2}}\arctan(\sqrt{\frac{1-y}{1+y}})(\arctanの加法定理)\\ &=\frac{\arccos(y)}{\sqrt{1-y^2}}(*) \end{align}
ただし,(*)では
\begin{align}
\arccos(\alpha)=2\arctan(\sqrt{\frac{1-\alpha}{1+\alpha}})
\end{align}
を用いた.
\begin{align} &(1)\int_{0}^{1}x^m\log^n(x)dx=(-1)^n\frac{n!}{(m+1)^{n+1}}\\ &(2)\int_{0}^{a}x^m\log^n(x)dx=a^{m+1}\sum_{k=0}^{n}(-1)^k\binom{n}{k}\frac{k!}{(m+1)^{k+1}}\times\log^{n-k}(a),a>0 \end{align}
.
.
.
.
.
.
.
.
.
(1)
\begin{align}
I_{(m,n)}=\int_{0}^{1}x^m\log^n(x)dx
\end{align}
とおく.部分積分により漸化式
\begin{align}
\frac{I_{(m,n)}}{I_{(m,n-1)}}=\frac{-n}{m+1}
\end{align}
を繰り返し用いて
\begin{align}
I_{(m,n)}=\int_{0}^{1}x^m\log^n(x)dx=(-1)^n\frac{n!}{(m+1)^{n+1}}
\end{align}
を得る.
(2)
\begin{align}
\int_{0}^{a}x^m\log^n(x)dx=a^{m+1}\int_{0}^{1}y^m\log^n(ay)dy
\end{align}
$\log^n(ay)=(\log(a)+\log(y))^n$を展開し,(1)を用いることで示される.