$$$$
前提
$n$ を正の整数とし,$E_{n}$ を $n$ 次単位行列とする。
以下では,$n$ 次複素行列$A \in \mathbb{C}^{n \times n}$ を,正則な上三角行列とし,
\begin{align}
\qquad
\begin{aligned}
A
=
\left[
\begin{array}{ccc}
a_{1,1} & \cdots & a_{1,n}
\\
{} & \ddots & \vdots
\\
{\Huge\boldsymbol{0}} & & a_{n,n}
\\
\end{array}
\right]
\end{aligned}
\end{align}
と表す。このとき,
\begin{align}
\qquad
\begin{aligned}
\left| A \right|
=
\det A
=
a_{1,1} \, \cdots \, a_{n,n}
=
\prod_{r=1}^{n} a_{r,r}
\qquad \textsf{かつ} \qquad
\left| A \right| \neq 0
\end{aligned}
\end{align}
より,
\begin{align}
\qquad
\begin{aligned}
a_{r,r}^{} \neq 0
\qquad
\left(
\,
\boldsymbol{\forall} \, r \in \left\{ 1 ,\, \dots ,\, n \right\}
\,
\right)
\end{aligned}
\end{align}
であることに注意する。
${}$
$A$ の逆行列を求めるには通常,掃き出し法(ガウスの消去法)等を用いるのが一般的ですが,ここでは一般的な手法は使わず,また計算量も度外視して,$A^{-1}$ の systematic な作り方を解説していきます。
とにかく丁寧に解説した(つもりな)ので,手加減なしの行列式計算がヤバめになっています。
(行列式計算アレルギーをお持ちの方は閲覧注意!)
なお,$n = 1 ,\, 2 ,\, 3,\, 4 ,\, 5$ の場合の$A$ の成分表示については,分かりやすさのために,添え字を簡略化する方向で調節しています。
${}$
$n = 1$ の場合
$\displaystyle
A
=
\left[
\begin{array}{c}
a
\end{array}
\right]
=
a
$ と表す。このとき,$
\displaystyle
A^{-1}
=
\left[
\begin{array}{c}
a^{-1}
\end{array}
\right]
=
a^{-1}
$ である。
${}$
$n = 2$ の場合
$\displaystyle
A
=
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{1} & \cellcolor{ lightgreen } b
\\
\hline
0 & \cellcolor{ pink } a_{2}
\\
\end{array}
\right]
$ と表す。このとき,$
\displaystyle
A'
=
\left[
\begin{array}{c|c}
\cellcolor{ pink } a'_{1} & \cellcolor{ lightgreen } b'
\\
\hline
0 & \cellcolor{ pink } a'_{2}
\\
\end{array}
\right]
$ が $A$ の逆行列となるように成分を決めていく。
${}$
$\textsf{[ 対角成分 $a'_{1} \, \boldsymbol{,} \ a'_{2}$ の決め方 ]}$
${}$
\begin{align}
\begin{aligned}
\textsf{(1-a)}
\quad
&
\textsf{$A'$ の $( 1 \boldsymbol{,} \, 1 )$ 成分} \quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a'_{1} & b'
\\
\hline
0 & a'_{2}
\\
\end{array}
\right]
\quad \textsf{を決めるには,$A$ の $( 1 \boldsymbol{,} \, 1 )$ 成分} \quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{1} & b
\\
\hline
0 & a_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,}
\\[10pt]
&
\begin{aligned}
a'_{1} = a_{1}^{-1}
\end{aligned}
\\[10pt]
&
\textsf{と決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(1-b)}
\quad
&
\textsf{$A'$ の $( 2 \boldsymbol{,} \, 2 )$ 成分} \quad
\left[
\begin{array}{c|c}
a'_{1} & b'
\\
\hline
0 & \cellcolor{ pink } a'_{2}
\\
\end{array}
\right]
\quad \textsf{も同様に,$A$ の $( 2 \boldsymbol{,} \, 2 )$ 成分} \quad
\left[
\begin{array}{c|c}
a_{1} & b
\\
\hline
0 & \cellcolor{ pink } a_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,}
\\[10pt]
&
\begin{aligned}
a'_{2} = a_{2}^{-1}
\end{aligned}
\\[10pt]
&
\textsf{と決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ $( 1 \boldsymbol{,} \, 2 )$ 成分 $b'$ の決め方 ]}$
${}$
$A'$ の $( 1 \boldsymbol{,} \, 2 )$ 成分 $
\displaystyle
\left[
\begin{array}{c|c}
a'_{1} & \cellcolor{ lightgreen } b'
\\
\hline
0 & a'_{2}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(2-a)}
\quad
&
\textsf{$A$ の $( 1 \boldsymbol{,} \, 2 )$ 成分}
\quad
\left[
\begin{array}{c|c}
a_{1} & \cellcolor{ lightgreen } b
\\
\hline
0 & a_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
b'
=
(-1)^{1+2} \cdot \dfrac{ b }{ \fbox{$\phantom{\det A}$} }
=
- \dfrac{b}{ \fbox{$\phantom{\det A}$} }
\\[10pt]
&
\textsf{として分母以外を決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(2-b)}
\quad
&
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{1} & b
\\
\hline
0 & \cellcolor{ pink } a_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
b'
=
- \dfrac{b}{ \det A }
=
- \dfrac{b}{ a_{1} a_{2} }
\\[10pt]
&
\textsf{として分母を決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ 成分計算 ]}$
${}$
ゆえに,
\begin{align}
\qquad
\begin{aligned}
A A'
&=
\left[
\begin{array}{cc}
a_{1} & b
\\
0 & a_{2}
\\
\end{array}
\right]
\left[
\begin{array}{cc}
a'_{1} & b'
\\
0 & a'_{2}
\\
\end{array}
\right]
=
\left[
\begin{array}{c|c}
a_{1} a'_{1} & a_{1} b' + b a'_{2}
\\[5pt]
\hline
0 & a_{1} a'_{2}
\\
\end{array}
\right]
\end{aligned}
\end{align}
となるので,
\begin{align}
\qquad
&
\begin{aligned}
a_{1} a'_{1}
=
a_{2} a'_{2}
=
1
\, \boldsymbol{,}
\end{aligned}
\\[10pt]
&
\begin{aligned}
a_{1} b' + b a'_{2}
&=
a_{1} b' + \dfrac{b}{a_{2}}
=
a_{1} b' - a_{1} \cdot \left( - \dfrac{b}{ a_{1} a_{2} } \right)
=
a_{1} b' - a_{1} b'
=
0
\, \boldsymbol{.}
\end{aligned}
\end{align}
${}$$\textsf{[ 計算終了 ]}$
${}$
よって,$A A' = E_{2}$ となるので,$A' = A^{-1}$ である。
${}$
$n = 3$ の場合
$\displaystyle
A
=
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{1} & \cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c
\\
\hline
0 & \cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
$ と表す。このとき,$
\displaystyle
A'
=
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a'_{1} & \cellcolor{ lightgreen } b'_{1} & \cellcolor{ lightsalmon } c'
\\
\hline
0 & \cellcolor{ pink } a'_{2} & \cellcolor{ lightgreen } b'_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a'_{3}
\\
\end{array}
\right]
$ が $A$ の逆行列となるように成分を決めていく。
${}$
$\textsf{[ 対角成分 $a'_{1} \, \boldsymbol{,} \ a'_{2} \, \boldsymbol{,} \ a'_{3}$ の決め方 ]}$
${}$
$A'$ の各対角成分 $
\displaystyle
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a'_{1} & b'_{1} & c'
\\
\hline
0 & \cellcolor{ pink } a'_{2} & b'_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a'_{3}
\\
\end{array}
\right]
$ を決めるには,$A$ の各対角成分 $
\displaystyle
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
$ のそれぞれに着目し,
\begin{align}
\qquad
\begin{aligned}
a'_{1} = a_{1}^{-1} \, \boldsymbol{,} \qquad
a'_{2} = a_{2}^{-1} \, \boldsymbol{,} \qquad
a'_{3} = a_{3}^{-1}
\end{aligned}
\end{align}
と決める。
${}$$\textsf{[ 対角隣接成分 $b'_{1} \, \boldsymbol{,} \, b'_{2}$ の決め方 ]}$
${}$
$A'$ の対角隣接成分 $
\displaystyle
\left[
\begin{array}{c|c|c}
a'_{1} & \cellcolor{ lightgreen } b'_{1} & c'
\\
\hline
0 & a'_{2} & \cellcolor{ lightgreen } b'_{2}
\\
\hline
0 & 0 & a'_{3}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(2-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{1} & \cellcolor{ lightgreen } b_{1}
\\
\hline
0 & \cellcolor{ pink } a_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,$n = 2$ の場合と同様に,} \quad
\\[10pt]
&
b'_{1}
=
(-1)^{1+2} \cdot \dfrac{ b_{1} }{ a_{1} a_{2} }
=
- \dfrac{ b_{1} }{ a_{1} a_{2} }
\\[10pt]
&
\textsf{と決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(2-b)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
\quad \textsf{に着目し,$n = 2$ の場合と同様に,} \quad
\\[10pt]
&
b'_{2}
=
(-1)^{2+3} \cdot \dfrac{ b_{2} }{ a_{2} a_{3} }
=
- \dfrac{ b_{2} }{ a_{2} a_{3} }
\\[10pt]
&
\textsf{と決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ $( 1 \boldsymbol{,} \, 3 )$ 成分 $c'$ の決め方 ]}$
${}$
$A'$ の $( 1 \boldsymbol{,} \, 3 )$ 成分 $
\displaystyle
\left[
\begin{array}{c|c|c}
a'_{1} & b'_{1} & \cellcolor{ lightsalmon } c'
\\
\hline
0 & a'_{2} & b'_{2}
\\
\hline
0 & 0 & a'_{3}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(3-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'
=
(-1)^{1+3}
\cdot
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母以外を決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(3-b)}
\quad
&
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'
=
\dfrac{ 1 }{ \det A }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ a_{1} a_{2} a_{3} }
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母を決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ 成分計算 ]}$
${}$
ゆえに,
\begin{align}
\qquad
\begin{aligned}
A A'
&=
\left[
\begin{array}{ccc}
a_{1} & b_{1} & c
\\
0 & a_{2} & b_{2}
\\
0 & 0 & a_{3}
\\
\end{array}
\right]
\left[
\begin{array}{ccc}
a'_{1} & b'_{1} & c'
\\
0 & a'_{2} & b'_{2}
\\
0 & 0 & a'_{3}
\\
\end{array}
\right]
\\[10pt]
&=
\left[
\begin{array}{c|c|c}
a_{1} a'_{1} & a_{1} b'_{1} + b_{1} a'_{2} & a_{1} c' + b_{1} b'_{2} + c a'_{3}
\\[5pt]
\hline
0 & a_{2} a'_{2} & a_{2} b'_{2} + b_{2} a'_{3}
\\[5pt]
\hline
0 & 0 & a_{3} a'_{3}
\\
\end{array}
\right]
\end{aligned}
\end{align}
となるので,
\begin{align}
\qquad
&
\begin{aligned}
a_{1} a'_{1}
=
a_{2} a'_{2}
=
a_{3} a'_{3}
=
1
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} b'_{1} + b_{1} a'_{2}
&=
a_{1} b'_{1} + \dfrac{ b_{1} }{ a_{2} }
=
a_{1} b'_{1} - a_{1} \cdot \left( - \dfrac{ b_{1} }{ a_{1} a_{2} } \right)
=
a_{1} b'_{1} - a_{1} b'_{1}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{2} b'_{2} + b_{2} a'_{3}
&=
a_{2} b'_{2} + \dfrac{ b_{2} }{ a_{3} }
=
a_{2} b'_{2} - a_{2} \cdot \left( - \dfrac{ b_{2} }{ a_{2} a_{3} } \right)
=
a_{2} b'_{2} - a_{2} b'_{2}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} c' + b_{1} b'_{2} + c a'_{3}
&=
a_{1} c'
+
b_{1}
\cdot
\left( - \dfrac{ b_{2} }{ a_{2} a_{3} } \right)
+
\dfrac{ c }{ a_{3} }
\\[10pt]
&=
a_{1} c'
-
\dfrac{ b_{1} b_{2} - a_{2} c }{ a_{2} a_{3} }
\\[10pt]
&=
a_{1} c'
-
\dfrac{ 1 }{ a_{2} a_{3} }
\left(
b_{1}
\left|
\begin{array}{cc}
1 & c
\\
0 & b_{2}
\\
\end{array}
\right|
+
a_{2}
\left|
\begin{array}{cc}
0 & c
\\
1 & b_{2}
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} c'
-
\dfrac{ 1 }{ a_{2} a_{3} }
\left|
\begin{array}{cc}
b_{1} & c
\\
a_{2} & b_{2}
\\
\end{array}
\right|
\\[10pt]
&=
a_{1} c'
-
a_{1}
\cdot
\dfrac{ 1 }{ a_{1} a_{2} a_{3} }
\left|
\begin{array}{cc}
b_{1} & c
\\
a_{2} & b_{2}
\\
\end{array}
\right|
\\[10pt]
&=
a_{1} c' - a_{1} c'
\\[10pt]
&=
0
\, \boldsymbol{.}
\end{aligned}
\end{align}
${}$$\textsf{[ 計算終了 ]}$
${}$
よって,$A A' = E_{3}$ となるので,$A' = A^{-1}$ である。
${}$
$n = 4$ の場合
$\displaystyle
A
=
\left[
\begin{array}{c|c|c|c}
\cellcolor{ pink } a_{1} & \cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d
\\
\hline
0 & \cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
$ と表す。このとき,$
\displaystyle
A'
=
\left[
\begin{array}{c|c|c|c}
\cellcolor{ pink } a'_{1} & \cellcolor{ lightgreen } b'_{1} & \cellcolor{ lightsalmon } c'_{1} & \cellcolor{ aquamarine } d'
\\
\hline
0 & \cellcolor{ pink } a'_{2} & \cellcolor{ lightgreen } b'_{2} & \cellcolor{ lightsalmon } c'_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a'_{3} & \cellcolor{ lightgreen } b'_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a'_{4}
\\
\end{array}
\right]
$ が $A$ の逆行列となるように成分を決めていく。
${}$
$\textsf{[ 対角成分 $a'_{1} \, \boldsymbol{,} \ a'_{2} \, \boldsymbol{,} \ a'_{3} \, \boldsymbol{,} \ a'_{4}$ の決め方 ]}$
${}$
$A'$ の各対角成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c}
\cellcolor{ pink } a'_{1} & b'_{1} & c'_{1} & d
\\
\hline
0 & \cellcolor{ pink } a'_{2} & b'_{2} & c'_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a'_{3} & b'_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a'_{4}
\\
\end{array}
\right]
$ を決めるには,$A$ の各対角成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c_{1} & d
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2} & c_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3} & b_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
$ のそれぞれに着目し,
\begin{align}
\qquad
\begin{aligned}
a'_{1} = a_{1}^{-1} \, \boldsymbol{,} \qquad
a'_{2} = a_{2}^{-1} \, \boldsymbol{,} \qquad
a'_{3} = a_{3}^{-1} \, \boldsymbol{,} \qquad
a'_{4} = a_{4}^{-1}
\end{aligned}
\end{align}
と決める。
${}$$\textsf{[ 対角隣接成分 $b'_{1} \, \boldsymbol{,} \, b'_{2} \, \boldsymbol{,} \, b'_{3}$ の決め方 ]}$
${}$
$A'$ の対角隣接成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c}
a'_{1} & \cellcolor{ lightgreen } b'_{1} & c'_{1} & d
\\
\hline
0 & a'_{2} & \cellcolor{ lightgreen } b'_{2} & c'_{2}
\\
\hline
0 & 0 & a'_{3} & \cellcolor{ lightgreen } b'_{3}
\\
\hline
0 & 0 & 0 & a'_{4}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(2-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{1} & \cellcolor{ lightgreen } b_{1}
\\
\hline
0 & \cellcolor{ pink } a_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
b'_{1}
=
(-1)^{1+2} \cdot \dfrac{ b_{1} }{ a_{1} a_{2} }
=
- \dfrac{ b_{1} }{ a_{1} a_{2} }
\\[10pt]
&
\textsf{と決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(2-b)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
b'_{2}
=
(-1)^{2+3} \cdot \dfrac{ b_{2} }{ a_{2} a_{3} }
=
- \dfrac{ b_{2} }{ a_{2} a_{3} }
\\[10pt]
&
\textsf{と決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(2-c)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\hline
0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
b'_{3}
=
(-1)^{3+4} \cdot \dfrac{ b_{3} }{ a_{3} a_{4} }
=
- \dfrac{ b_{3} }{ a_{3} a_{4} }
\\[10pt]
&
\textsf{と決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ 成分 $c'_{2} \, \boldsymbol{,} \, c'_{2}$ の決め方 ]}$
${}$
$A'$ の $( 1 \boldsymbol{,} \, 3 ) \, \boldsymbol{,} \ ( 2 \boldsymbol{,} \, 4 )$ 成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c}
a'_{1} & b'_{1} & \cellcolor{ lightsalmon } c'_{1} & d'
\\
\hline
0 & a'_{2} & b'_{2} & \cellcolor{ lightsalmon } c'_{2}
\\
\hline
0 & 0 & a'_{3} & b'_{3}
\\
\hline
0 & 0 & 0 & a'_{4}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(3-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'_{1}
=
(-1)^{1+3}
\cdot
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母以外を決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(3-b)}
\quad
&
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c_{1}
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'_{1}
=
\dfrac{ 1 }{ a_{1} a_{2} a_{3} }
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母を決める;}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(3-c)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'_{2}
=
(-1)^{2+4}
\cdot
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母以外を決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(3-d)}
\quad
&
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{2} & b_{2} & c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & b_{3}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'_{2}
=
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母を決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ $( 1 \boldsymbol{,} \, 4 )$ 成分 $d'$ の決め方 ]}$
${}$
$A'$ の $( 1 \boldsymbol{,} \, 4 )$ 成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c}
a'_{1} & b'_{1} & c'_{1} & \cellcolor{ aquamarine } d'
\\
\hline
0 & a'_{2} & b'_{2} & c'_{2}
\\
\hline
0 & 0 & a'_{3} & b'_{3}
\\
\hline
0 & 0 & 0 & a'_{4}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(4-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
d'
=
(-1)^{1+4}
\cdot
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
=
- \dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母以外を決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(4-b)}
\quad
&
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c_{1} & d
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2} & c_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3} & b_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
d'
=
- \dfrac{ 1 }{ \det A }
\cdot
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
=
- \dfrac{ 1 }{ a_{1} a_{2} a_{3} a_{4} }
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母を決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ 成分計算 ]}$
${}$
ゆえに,
\begin{align}
\qquad
\begin{aligned}
A A'
&=
\left[
\begin{array}{cccc}
a_{1} & b_{1} & c_{1} & d
\\
0 & a_{2} & b_{2} & c_{2}
\\
0 & 0 & a_{3} & b_{3}
\\
0 & 0 & 0 & a_{4}
\\
\end{array}
\right]
\left[
\begin{array}{cccc}
a'_{1} & b'_{1} & c'_{1} & d'
\\
0 & a'_{2} & b'_{2} & c'_{2}
\\
0 & 0 & a'_{3} & b'_{3}
\\
0 & 0 & 0 & a'_{4}
\\
\end{array}
\right]
\\[10pt]
&=
\left[
\begin{array}{c|c|c|c}
a_{1} a'_{1} & a_{1} b'_{1} + b_{1} a'_{2} & a_{1} c'_{1} + b_{1} b'_{2} + c_{1} a'_{3} & a_{1} d' + b_{1} c'_{2} + c_{1} b'_{3} + d a'_{4}
\\[5pt]
\hline
0 & a_{2} a'_{2} & a_{2} b'_{2} + b_{2} a'_{3} & a_{2} c'_{2} + b_{2} b'_{3} + c_{2} a'_{4}
\\[5pt]
\hline
0 & 0 & a_{3} a'_{3} & a_{3} b'_{3} + b_{3} a'_{4}
\\[5pt]
\hline
0 & 0 & 0 & a_{4} a'_{4}
\\
\end{array}
\right]
\end{aligned}
\end{align}
となるので,
\begin{align}
\qquad
&
\begin{aligned}
a_{1} a'_{1}
=
a_{2} a'_{2}
=
a_{3} a'_{3}
=
a_{4} a'_{4}
=
1
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} b'_{1} + b_{1} a'_{2}
&=
a_{1} b'_{1} + \dfrac{ b_{1} }{ a_{2} }
=
a_{1} b'_{1}
-
a_{1} \cdot \left( - \dfrac{ b_{1} }{ a_{1} a_{2} } \right)
=
a_{1} b'_{1} - a_{1} b'_{1}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{2} b'_{2} + b_{2} a'_{3}
&=
a_{2} b'_{2} + \dfrac{ b_{2} }{ a_{3} }
=
a_{2} b'_{2}
-
a_{2} \cdot \left( - \dfrac{ b_{2} }{ a_{2} a_{3} } \right)
=
a_{2} b'_{2} - a_{2} b'_{2}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{3} b'_{3} + b_{3} a'_{4}
&=
a_{3} b'_{3} + \dfrac{ b_{3} }{ a_{4} }
=
a_{3} b'_{3}
-
a_{3} \cdot \left( - \dfrac{ b_{3} }{ a_{3} a_{4} } \right)
=
a_{3} b'_{3} - a_{3} b'_{3}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} c'_{1} + b_{1} b'_{2} + c_{1} a'_{3}
&=
a_{1} c'_{1}
+
b_{1}
\cdot
\left( - \dfrac{ b_{2} }{ a_{2} a_{3} } \right)
+
\dfrac{ c_{1} }{ a_{3} }
\\[10pt]
&=
a_{1} c'_{1}
-
\dfrac{ b_{1} b_{2} - a_{2} c_{1} }{ a_{2} a_{3} }
\\[10pt]
&=
a_{1} c'_{1}
-
\dfrac{ 1 }{ a_{2} a_{3} }
\left|
\begin{array}{cc}
b_{1} & c_{1}
\\
a_{2} & b_{2}
\\
\end{array}
\right|
\\[10pt]
&=
a_{1} c'_{1}
-
a_{1}
\cdot
\dfrac{ 1 }{ a_{1} a_{2} a_{3} }
\left|
\begin{array}{cc}
b_{1} & c_{1}
\\
a_{2} & b_{2}
\\
\end{array}
\right|
\\[10pt]
&=
a_{1} c'_{1} - a_{1} c'_{1}
\\[10pt]
&=
0
\, \boldsymbol{,}
\end{aligned}
\\[10pt]
&
\begin{aligned}
a_{2} c'_{2} + b_{2} b'_{3} + c_{2} a'_{4}
&=
a_{2} c'_{2}
+
b_{2}
\cdot
\left( - \dfrac{ b_{3} }{ a_{3} a_{4} } \right)
+
\dfrac{ c_{2} }{ a_{4} }
\\[10pt]
&=
a_{2} c'_{2}
-
\dfrac{ b_{2} b_{3} - a_{3} c_{2} }{ a_{3} a_{4} }
\\[10pt]
&=
a_{2} c'_{2}
-
\dfrac{ 1 }{ a_{3} a_{4} }
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
\\[10pt]
&=
a_{2} c'_{2}
-
a_{2}
\cdot
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
\\[10pt]
&=
a_{2} c'_{2} - a_{2} c'_{2}
\\[10pt]
&=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} d' + b_{1} c'_{2} + c_{1} b'_{3} + d a'_{4}
&=
a_{1} d'
+
b_{1}
\cdot
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
+
c_{1}
\cdot
\left( - \dfrac{ b_{3} }{ a_{3} a_{4} } \right)
+
\dfrac{ d }{ a_{4} }
\\[10pt]
&=
a_{1} d'
+
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left(
b_{1}
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
-
a_{2} b_{3} c_{1}
+
a_{2} a_{3} d
\right)
\\[10pt]
&=
a_{1} d'
+
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left(
b_{1}
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
-
a_{2}
\left|
\begin{array}{cc}
c_{1} & d
\\
a_{3} & b_{3}
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} d'
+
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left(
b_{1}
\left|
\begin{array}{ccc}
1 & c_{1} & d
\\
0 & b_{2} & c_{2}
\\
0 & a_{3} & b_{3}
\end{array}
\right|
+
a_{2}
\left|
\begin{array}{ccc}
0 & c_{1} & d
\\
1 & b_{2} & c_{2}
\\
0 & a_{3} & b_{3}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} d'
-
a_{1}
\cdot
\left(
- \dfrac{ 1 }{ a_{1} a_{2} a_{3} a_{4} }
\left|
\begin{array}{ccc}
b_{1} & c_{1} & d
\\
a_{2} & b_{2} & c_{2}
\\
0 & a_{3} & b_{3}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} d' - a_{1} d'
\\[10pt]
&=
0
\, \boldsymbol{.}
\end{aligned}
\end{align}
${}$$\textsf{[ 計算終了 ]}$
${}$
よって,$A A' = E_{4}$ となるので,$A' = A^{-1}$ である。
${}$
$n = 5$ の場合
$\displaystyle
A
=
\left[
\begin{array}{c|c|c|c|c}
\cellcolor{ pink } a_{1} & \cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1} & \cellcolor{ gold } e
\\
\hline
0 & \cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\hline
0 & 0 & 0 & 0 & \cellcolor{ pink } a_{5}
\\
\end{array}
\right]
$ と表す。このとき,$
\displaystyle
A'
=
\left[
\begin{array}{c|c|c|c|c}
\cellcolor{ pink } a'_{1} & \cellcolor{ lightgreen } b'_{1} & \cellcolor{ lightsalmon } c'_{1} & \cellcolor{ aquamarine } d'_{1} & \cellcolor{ gold } e'
\\
\hline
0 & \cellcolor{ pink } a'_{2} & \cellcolor{ lightgreen } b'_{2} & \cellcolor{ lightsalmon } c'_{2} & \cellcolor{ aquamarine } d'_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a'_{3} & \cellcolor{ lightgreen } b'_{3} & \cellcolor{ lightsalmon } c'_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a'_{4} & \cellcolor{ lightgreen } b'_{4}
\\
\hline
0 & 0 & 0 & 0 & \cellcolor{ pink } a'_{5}
\\
\end{array}
\right]
$ が $A$ の逆行列となるように成分を決めていく。
${}$
$\textsf{[ 対角成分 $a'_{1} \, \boldsymbol{,} \ a'_{2} \, \boldsymbol{,} \ a'_{3} \, \boldsymbol{,} \ a'_{4} \, \boldsymbol{,} \ a'_{5}$ の決め方 ]}$
${}$
$A'$ の各対角成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c|c}
\cellcolor{ pink } a'_{1} & b'_{1} & c'_{1} & d'_{1} & e'
\\
\hline
0 & \cellcolor{ pink } a'_{2} & b'_{2} & c'_{2} & d'_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a'_{3} & b'_{3} & c'_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a'_{4} & b'_{4}
\\
\hline
0 & 0 & 0 & 0 & \cellcolor{ pink } a'_{5}
\\
\end{array}
\right]
$ を決めるには,$A$ の各対角成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c_{1} & d_{1} & e
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2} & c_{2} & d_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3} & b_{3} & c_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{4} & b_{4}
\\
\hline
0 & 0 & 0 & 0 & \cellcolor{ pink } a_{5}
\\
\end{array}
\right]
$ のそれぞれに着目し,
\begin{align}
\qquad
\begin{aligned}
a'_{1} = a_{1}^{-1} \, \boldsymbol{,} \qquad
a'_{2} = a_{2}^{-1} \, \boldsymbol{,} \qquad
a'_{3} = a_{3}^{-1} \, \boldsymbol{,} \qquad
a'_{4} = a_{4}^{-1} \, \boldsymbol{,} \qquad
a'_{5} = a_{5}^{-1}
\end{aligned}
\end{align}
と決める。
${}$$\textsf{[ 対角隣接成分 $b'_{1} \, \boldsymbol{,} \, b'_{2} \, \boldsymbol{,} \, b'_{3} \, \boldsymbol{,} \, b'_{4}$ の決め方 ]}$
${}$
$A'$ の対角隣接成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c|c}
a'_{1} & \cellcolor{ lightgreen } b'_{1} & c'_{1} & d'_{1} & e'
\\
\hline
0 & a'_{2} & \cellcolor{ lightgreen } b'_{2} & c'_{2} & d'_{2}
\\
\hline
0 & 0 & a'_{3} & \cellcolor{ lightgreen } b'_{3} & c'_{3}
\\
\hline
0 & 0 & 0 & a'_{4} & \cellcolor{ lightgreen } b'_{4}
\\
\hline
0 & 0 & 0 & 0 & a'_{5}
\\
\end{array}
\right]
$ を決めるには,
${}$
$A$ のブロック行列 $
\displaystyle
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{1} & \cellcolor{ lightgreen } b_{1}
\\
\hline
0 & \cellcolor{ pink } a_{2}
\\
\end{array}
\right]
\, \boldsymbol{,} \ \
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
\, \boldsymbol{,} \ \
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\hline
0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
\, \boldsymbol{,} \ \
\left[
\begin{array}{c|c}
\cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\hline
0 & \cellcolor{ pink } a_{5}
\\
\end{array}
\right]
$ のそれぞれに着目し,
${}$
\begin{align}
\qquad
&
\begin{aligned}
&
b'_{1}
=
(-1)^{1+2} \cdot \dfrac{ b_{1} }{ a_{1} a_{2} }
=
- \dfrac{ b_{1} }{ a_{1} a_{2} }
\, \boldsymbol{,}
\\[10pt]
&
b'_{2}
=
(-1)^{2+3} \cdot \dfrac{ b_{2} }{ a_{2} a_{3} }
=
- \dfrac{ b_{2} }{ a_{2} a_{3} }
\, \boldsymbol{,}
\\[10pt]
&
b'_{3}
=
(-1)^{3+4} \cdot \dfrac{ b_{3} }{ a_{3} a_{4} }
=
- \dfrac{ b_{3} }{ a_{3} a_{4} }
\, \boldsymbol{,}
\\[10pt]
&
b'_{4}
=
(-1)^{4+5} \cdot \dfrac{ b_{4} }{ a_{4} a_{5} }
=
- \dfrac{ b_{4} }{ a_{4} a_{5} }
\end{aligned}
\end{align}
と決める。
${}$$\textsf{[ 成分 $c'_{2} \, \boldsymbol{,} \, c'_{2} \, \boldsymbol{,} \, c'_{3}$ の決め方 ]}$
${}$
$A'$ の $( 1 \boldsymbol{,} \, 3 ) \, \boldsymbol{,} \ ( 2 \boldsymbol{,} \, 4 ) \, \boldsymbol{,} \ ( 3 \boldsymbol{,} \, 5 )$ 成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c|c}
a'_{1} & b'_{1} & \cellcolor{ lightsalmon } c'_{1} & d'_{1} & e'
\\
\hline
0 & a'_{2} & b'_{2} & \cellcolor{ lightsalmon } c'_{2} & d'_{2}
\\
\hline
0 & 0 & a'_{3} & b'_{3} & \cellcolor{ lightsalmon } c'_{3}
\\
\hline
0 & 0 & 0 & a'_{4} & b'_{4}
\\
\hline
0 & 0 & 0 & 0 & a'_{5}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(3-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right]
\quad \textsf{および} \quad
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c_{1}
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'_{1}
=
(-1)^{1+3}
\cdot
\dfrac{ 1 }{ a_{1} a_{2} a_{3} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ a_{1} a_{2} a_{3} }
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{と決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(3-b)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right]
\quad \textsf{および} \quad
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{2} & b_{2} & c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & b_{3}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'_{2}
=
(-1)^{2+4}
\cdot
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{と決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(3-c)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
\cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right]
\quad \textsf{および} \quad
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ pink } a_{3} & b_{3} & c_{3}
\\
\hline
0 & \cellcolor{ pink } a_{4} & b_{4}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{5}
\\
\end{array}
\right]
\quad \textsf{に着目し,} \quad
\\[10pt]
&
c'_{3}
=
(-1)^{3+5}
\cdot
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\cdot
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
\cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left|
\begin{array}{c|c}
\cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
\cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{と決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ 成分 $d'_{1} \, \boldsymbol{,} \, d'_{2}$ の決め方 ]}$
${}$
$A'$ の $( 1 \boldsymbol{,} \, 4 ) \, \boldsymbol{,} \, ( 2 \boldsymbol{,} \, 5 )$ 成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c|c}
a'_{1} & b'_{1} & c'_{1} & \cellcolor{ aquamarine } d'_{1} & e'
\\
\hline
0 & a'_{2} & b'_{2} & c'_{2} & \cellcolor{ aquamarine } d'_{2}
\\
\hline
0 & 0 & a'_{3} & b'_{3} & c'_{3}
\\
\hline
0 & 0 & 0 & a'_{4} & b'_{4}
\\
\hline
0 & 0 & 0 & 0 & a'_{5}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(4-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right]
\quad \textsf{および} \quad
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c_{1} & d_{1}
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2} & c_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3} & b_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{4}
\\
\end{array}
\right]
\quad \textsf{に着目し,}
\\[10pt]
&
d'_{1}
=
(-1)^{1+4}
\cdot
\dfrac{ 1 }{ a_{1} a_{2} a_{3} a_{4} }
\cdot
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
=
- \dfrac{ 1 }{ a_{1} a_{2} a_{3} a_{4} }
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1}
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{と決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(4-b)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right]
\quad \textsf{および} \quad
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c|c}
\cellcolor{ pink } a_{2} & b_{2} & c_{2} & d_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & b_{3} & c_{3}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{4} & b_{4}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{5}
\\
\end{array}
\right]
\quad \textsf{に着目し,}
\\[10pt]
&
d'_{2}
=
(-1)^{2+5}
\cdot
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\cdot
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right|
=
- \dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left|
\begin{array}{c|c|c}
\cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
\cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{と決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ $( 1 \boldsymbol{,} \, 5 )$ 成分 $e'$ の決め方 ]}$
${}$
$A'$ の $( 1 \boldsymbol{,} \, 5 )$ 成分 $
\displaystyle
\left[
\begin{array}{c|c|c|c|c}
a'_{1} & b'_{1} & c'_{1} & d'_{1} & \cellcolor{ gold } e'
\\
\hline
0 & a'_{2} & b'_{2} & c'_{2} & d'_{2}
\\
\hline
0 & 0 & a'_{3} & b'_{3} & c'_{3}
\\
\hline
0 & 0 & 0 & a'_{4} & b'_{4}
\\
\hline
0 & 0 & 0 & 0 & a'_{5}
\\
\end{array}
\right]
$ を決めるには,
${}$
\begin{align}
\begin{aligned}
\textsf{(5-a)}
\quad
&
\textsf{$A$ のブロック行列}
\quad
\left[
\begin{array}{c|c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1} & \cellcolor{ gold } e
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right]
\quad \textsf{に着目し,}
\\[10pt]
&
e'
=
(-1)^{1+5}
\cdot
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1} & \cellcolor{ gold } e
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right|
=
\dfrac{ 1 }{ \fbox{$\phantom{\det A}$} }
\cdot
\left|
\begin{array}{c|c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1} & \cellcolor{ gold } e
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母以外を決め,}
\end{aligned}
\end{align}
${}$
\begin{align}
\begin{aligned}
\textsf{(5-b)}
\quad
&
\textsf{$A$ の対角成分}
\quad
\left[
\begin{array}{c|c|c|c|c}
\cellcolor{ pink } a_{1} & b_{1} & c_{1} & d_{1} & e
\\
\hline
0 & \cellcolor{ pink } a_{2} & b_{2} & c_{2} & d_{2}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{3} & b_{3} & c_{3}
\\
\hline
0 & 0 & 0 & \cellcolor{ pink } a_{4} & b_{4}
\\
\hline
0 & 0 & 0 & 0 & \cellcolor{ pink } a_{5}
\\
\end{array}
\right]
\quad \textsf{に着目し,}
\\[10pt]
&
e'
=
\dfrac{ 1 }{ a_{1} a_{2} a_{3} a_{4} a_{5} }
\left|
\begin{array}{c|c|c|c}
\cellcolor{ lightgreen } b_{1} & \cellcolor{ lightsalmon } c_{1} & \cellcolor{ aquamarine } d_{1} & \cellcolor{ gold } e
\\
\hline
\cellcolor{ pink } a_{2} & \cellcolor{ lightgreen } b_{2} & \cellcolor{ lightsalmon } c_{2} & \cellcolor{ aquamarine } d_{2}
\\
\hline
0 & \cellcolor{ pink } a_{3} & \cellcolor{ lightgreen } b_{3} & \cellcolor{ lightsalmon } c_{3}
\\
\hline
0 & 0 & \cellcolor{ pink } a_{4} & \cellcolor{ lightgreen } b_{4}
\\
\end{array}
\right|
\\[10pt]
&
\textsf{として分母を決める。}
\end{aligned}
\end{align}
${}$$\textsf{[ 成分計算 ]}$
${}$
ゆえに,
\begin{align}
\qquad
\begin{aligned}
A A'
&=
\left[
\begin{array}{ccccc}
a_{1} & b_{1} & c_{1} & d_{1} & e
\\
0 & a_{2} & b_{2} & c_{2} & d_{2}
\\
0 & 0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & 0 & a_{4} & b_{4}
\\
0 & 0 & 0 & 0 & a_{5}
\end{array}
\right]
\left[
\begin{array}{cccc}
a'_{1} & b'_{1} & c'_{1} & d'_{1} & e'
\\
0 & a'_{2} & b'_{2} & c'_{2} & d'_{2}
\\
0 & 0 & a'_{3} & b'_{3} & c'_{3}
\\
0 & 0 & 0 & a'_{4} & b'_{4}
\\
0 & 0 & 0 & 0 & a'_{5}
\end{array}
\right]
\\[10pt]
&=
\left[
\begin{array}{c|c|c|c|c}
a_{1} a'_{1} & a_{1} b'_{1} + b_{1} a'_{2} & a_{1} c'_{1} + b_{1} b'_{2} + c_{1} a'_{3} & a_{1} d'_{1} + b_{1} c'_{2} + c_{1} b'_{3} + d_{1} a'_{4} & a_{1} e' + b_{1} d'_{2} + c_{1} c'_{3} + d_{1} b'_{4} + e a'_{5}
\\[5pt]
\hline
0 & a_{2} a'_{2} & a_{2} b'_{2} + b_{2} a'_{3} & a_{2} c'_{2} + b_{2} b'_{3} + c_{2} a'_{4} & a_{2} d'_{2} + b_{2} c'_{3} + c_{2} b'_{4} + d_{2} a'_{5}
\\[5pt]
\hline
0 & 0 & a_{3} a'_{3} & a_{3} b'_{3} + b_{3} a'_{4} & a_{3} c'_{3} + b_{3} b'_{4} + c_{3} a'_{5}
\\[5pt]
\hline
0 & 0 & 0 & a_{4} a'_{4} & a_{4} b'_{4} + b_{4} a'_{5}
\\[5pt]
\hline
0 & 0 & 0 & 0 & a_{5} a'_{5}
\\
\end{array}
\right]
\end{aligned}
\end{align}
となるので,
\begin{align}
\qquad
&
\begin{aligned}
a_{1} a'_{1}
=
a_{2} a'_{2}
=
a_{3} a'_{3}
=
a_{4} a'_{4}
=
a_{5} a'_{5}
=
1
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} b'_{1} + b_{1} a'_{2}
&=
a_{1} b'_{1} + \dfrac{ b_{1} }{ a_{2} }
=
a_{1} b'_{1} - a_{1} \cdot \left( - \dfrac{ b_{1} }{ a_{1} a_{2} } \right)
=
a_{1} b'_{1} - a_{1} b'_{1}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{2} b'_{2} + b_{2} a'_{3}
&=
a_{2} b'_{2} + \dfrac{ b_{2} }{ a_{3} }
=
a_{2} b'_{2} - a_{2} \cdot \left( - \dfrac{ b_{2} }{ a_{2} a_{3} } \right)
=
a_{2} b'_{2} - a_{2} b'_{2}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{3} b'_{3} + b_{3} a'_{4}
&=
a_{3} b'_{3} + \dfrac{ b_{3} }{ a_{4} }
=
a_{3} b'_{3} - a_{3} \cdot \left( - \dfrac{ b_{3} }{ a_{3} a_{4} } \right)
=
a_{3} b'_{3} - a_{3} b'_{3}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{4} b'_{4} + b_{4} a'_{5}
&=
a_{4} b'_{4} + \dfrac{ b_{4} }{ a_{5} }
=
a_{4} b'_{4} - a_{4} \cdot \left( - \dfrac{ b_{4} }{ a_{4} a_{5} } \right)
=
a_{4} b'_{4} - a_{4} b'_{4}
=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} c'_{1} + b_{1} b'_{2} + c_{1} a'_{3}
&=
a_{1} c'_{1}
+
b_{1}
\cdot
\left( - \dfrac{ b_{2} }{ a_{2} a_{3} } \right)
+
\dfrac{ c_{1} }{ a_{3} }
\\[10pt]
&=
a_{1} c'_{1}
-
\dfrac{ b_{1} b_{2} - a_{2} c_{1} }{ a_{2} a_{3} }
\\[10pt]
&=
a_{1} c'_{1}
-
\dfrac{ 1 }{ a_{2} a_{3} }
\left|
\begin{array}{cc}
b_{1} & c_{1}
\\
a_{2} & b_{2}
\\
\end{array}
\right|
\\[10pt]
&=
a_{1} c'_{1}
-
a_{1}
\cdot
\dfrac{ 1 }{ a_{1} a_{2} a_{3} }
\left|
\begin{array}{cc}
b_{1} & c_{1}
\\
a_{2} & b_{2}
\\
\end{array}
\right|
\\[10pt]
&=
a_{1} c'_{1} - a_{1} c'_{1}
\\[10pt]
&=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{2} c'_{2} + b_{2} b'_{3} + c_{2} a'_{4}
&=
a_{2} c'_{2}
+
b_{2}
\cdot
\left( - \dfrac{ b_{3} }{ a_{3} a_{4} } \right)
+
\dfrac{ c_{2} }{ a_{4} }
\\[10pt]
&=
a_{2} c'_{2}
-
\dfrac{ b_{2} b_{3} - a_{3} c_{2} }{ a_{3} a_{4} }
\\[10pt]
&=
a_{2} c'_{2}
-
\dfrac{ 1 }{ a_{3} a_{4} }
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
\\[10pt]
&=
a_{2} c'_{2}
-
a_{2}
\cdot
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
\\[10pt]
&=
a_{2} c'_{2} - a_{2} c'_{2}
\\[10pt]
&=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{3} c'_{3} + b_{3} b'_{4} + c_{3} a'_{5}
&=
a_{3} c'_{3}
+
b_{3}
\cdot
\left( - \dfrac{ b_{4} }{ a_{4} a_{5} } \right)
+
\dfrac{ c_{3} }{ a_{5} }
\\[10pt]
&=
a_{3} c'_{3}
-
\dfrac{ b_{3} b_{4} - a_{4} c_{3} }{ a_{4} a_{5} }
\\[10pt]
&=
a_{3} c'_{3}
-
\dfrac{ 1 }{ a_{4} a_{5} }
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
\\[10pt]
&=
a_{3} c'_{3}
-
a_{3}
\cdot
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
\\[10pt]
&=
a_{3} c'_{3} - a_{3} c'_{3}
\\[10pt]
&=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{1} d'_{1} + b_{1} c'_{2} + c_{1} b'_{3} + d_{1} a'_{4}
&=
a_{1} d'_{1}
+
b_{1}
\cdot
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
+
c_{1}
\cdot
\left( - \dfrac{ b_{3} }{ a_{3} a_{4} } \right)
+
\dfrac{ d_{1} }{ a_{4} }
\\[10pt]
&=
a_{1} d'_{1}
+
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left(
b_{1}
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
-
a_{2} b_{3} c_{1}
+
a_{2} a_{3} d_{1}
\right)
\\[10pt]
&=
a_{1} d'_{1}
+
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left(
b_{1}
\left|
\begin{array}{cc}
b_{2} & c_{2}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
-
a_{2}
\left|
\begin{array}{cc}
c_{1} & d_{1}
\\
a_{3} & b_{3}
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} d'_{1}
+
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left(
b_{1}
\left|
\begin{array}{ccc}
1 & c_{1} & d_{1}
\\
0 & b_{2} & c_{2}
\\
0 & a_{3} & b_{3}
\end{array}
\right|
+
a_{2}
\left|
\begin{array}{ccc}
0 & c_{1} & d_{1}
\\
1 & b_{2} & c_{2}
\\
0 & a_{3} & b_{3}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} d'_{1}
+
\dfrac{ 1 }{ a_{2} a_{3} a_{4} }
\left|
\begin{array}{ccc}
b_{1} & c_{1} & d_{1}
\\
a_{2} & b_{2} & c_{2}
\\
0 & a_{3} & b_{3}
\end{array}
\right|
\\[10pt]
&=
a_{1} d'_{1}
-
a_{1}
\cdot
\left(
- \dfrac{ 1 }{ a_{1} a_{2} a_{3} a_{4} }
\left|
\begin{array}{ccc}
b_{1} & c_{1} & d_{1}
\\
a_{2} & b_{2} & c_{2}
\\
0 & a_{3} & b_{3}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} d'_{1} - a_{1} d'_{1}
\\[10pt]
&=
0
\, \boldsymbol{,}
\end{aligned}
\\[15pt]
&
\begin{aligned}
a_{2} d'_{2} + b_{2} c'_{3} + c_{2} b'_{4} + d_{2} a'_{5}
&=
a_{2} d'_{2}
+
b_{2}
\cdot
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
+
c_{2}
\cdot
\left( - \dfrac{ b_{4} }{ a_{4} a_{5} } \right)
+
\dfrac{ d_{2} }{ a_{5} }
\\[10pt]
&=
a_{2} d'_{2}
+
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left(
b_{2}
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
-
a_{3} b_{4} c_{2}
+
a_{3} a_{4} d_{2}
\right)
\\[10pt]
&=
a_{2} d'_{2}
+
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left(
b_{2}
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
-
a_{3}
\left|
\begin{array}{cc}
c_{2} & d_{2}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{2} d'_{2}
+
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left(
b_{2}
\left|
\begin{array}{ccc}
1 & c_{2} & d_{2}
\\
0 & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\\
\end{array}
\right|
+
a_{3}
\left|
\begin{array}{ccc}
0 & c_{2} & d_{2}
\\
1 & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{2} d'_{2}
+
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left|
\begin{array}{ccc}
b_{2} & c_{2} & d_{2}
\\
a_{3} & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\\
\end{array}
\right|
\\[10pt]
&=
a_{2} d'_{2}
-
a_{2}
\cdot
\left(
- \dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left|
\begin{array}{ccc}
b_{2} & c_{2} & d_{2}
\\
a_{3} & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{2} d'_{2} - a_{2} d'_{2}
\\[10pt]
&=
0
\, \boldsymbol{,}
\end{aligned}
\\[20pt]
&
\begin{aligned}
a_{1} e' + b_{1} d'_{2} + c_{1} c'_{3} + d_{1} b'_{4} + e a'_{5}
&=
a_{1} e'
+
b_{1}
\cdot
\left(
- \dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left|
\begin{array}{ccc}
b_{2} & c_{2} & d_{2}
\\
a_{3} & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\\
\end{array}
\right|
\right)
+
c_{1}
\cdot
\dfrac{ 1 }{ a_{3} a_{4} a_{5} }
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
+
d_{1}
\cdot
\left(
- \dfrac{ b_{4} }{ a_{4} a_{5} }
\right)
+
\dfrac{ e }{ a_{5} }
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left(
b_{1}
\left|
\begin{array}{ccc}
b_{2} & c_{2} & d_{2}
\\
a_{3} & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\\
\end{array}
\right|
-
c_{1} a_{2}
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
+
d_{1} a_{2} a_{3} b_{4}
-
e a_{2} a_{3} a_{4}
\right)
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left(
b_{1}
\left|
\begin{array}{cccc}
1 & c_{1} & d_{1} & e
\\
0 & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
-
c_{1} a_{2}
\left|
\begin{array}{cc}
b_{3} & c_{3}
\\
a_{4} & b_{4}
\\
\end{array}
\right|
+
a_{2} a_{3}
\left|
\begin{array}{cc}
d_{1} & e
\\
a_{4} & b_{4}
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left(
\left|
\begin{array}{cccc}
b_{1} & c_{1} & d_{1} & e
\\
0 & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
-
c_{1} a_{2}
\left|
\begin{array}{ccc}
1 & d_{1} & e
\\
0 & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\end{array}
\right|
-
a_{2} a_{3}
\left|
\begin{array}{ccc}
0 & d_{1} & e
\\
1 & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left(
\left|
\begin{array}{cccc}
b_{1} & c_{1} & d_{1} & e
\\
0 & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
-
a_{2}
\left|
\begin{array}{ccc}
c_{1} & d_{1} & e
\\
0 & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\end{array}
\right|
-
a_{2}
\left|
\begin{array}{ccc}
0 & d_{1} & e
\\
a_{3} & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left(
\left|
\begin{array}{cccc}
b_{1} & c_{1} & d_{1} & e
\\
0 & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
-
a_{2}
\left|
\begin{array}{ccc}
c_{1} & d_{1} & e
\\
a_{3} & b_{3} & c_{3}
\\
0 & a_{4} & b_{4}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left(
\left|
\begin{array}{cccc}
b_{1} & c_{1} & d_{1} & e
\\
0 & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
+
a_{2}
\left|
\begin{array}{cccc}
0 & c_{1} & d_{1} & e
\\
1 & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left(
\left|
\begin{array}{cccc}
b_{1} & c_{1} & d_{1} & e
\\
0 & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
+
\left|
\begin{array}{cccc}
0 & c_{1} & d_{1} & e
\\
a_{2} & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
\right)
\\[10pt]
&=
a_{1} e'
-
\dfrac{ 1 }{ a_{2} a_{3} a_{4} a_{5} }
\left|
\begin{array}{cccc}
b_{1} & c_{1} & d_{1} & e
\\
a_{2} & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
\\[10pt]
&=
a_{1} e'
-
a_{1}
\cdot
\dfrac{ 1 }{ a_{1} a_{2} a_{3} a_{4} a_{5} }
\left|
\begin{array}{cccc}
b_{1} & c_{1} & d_{1} & e
\\
a_{2} & b_{2} & c_{2} & d_{2}
\\
0 & a_{3} & b_{3} & c_{3}
\\
0 & 0 & a_{4} & b_{4}
\end{array}
\right|
\\[10pt]
&=
a_{1} e' - a_{1} e'
\\[10pt]
&=
0
\, \boldsymbol{.}
\end{aligned}
\end{align}
${}$$\textsf{[ 計算終了 ]}$
${}$
よって,$A A' = E_{5}$ となるので,$A' = A^{-1}$ である。
${}$
$n \geq 4$ の場合
$
\displaystyle
\begin{aligned}
A_{n}
:=
A
=
\left[
\begin{array}{ccc}
a_{1 \, , \, 1} & \cdots & a_{1 \, , \, n}
\\
{} & \ddots & \vdots
\\
{\Huge\boldsymbol{0}} & & a_{n \, , \, n}
\\
\end{array}
\right]
\end{aligned}
$ と表す。
また,各 $i \in \left\{ 1 \boldsymbol{,} \, \boldsymbol{\dots} \boldsymbol{,} \, n \right\}$ および 各 $j \in \left\{ 0 \boldsymbol{,} \, \boldsymbol{\dots} \boldsymbol{,} \, n-1 \right\}$ に対して,$a'_{i \, , \, i+j} \in \mathbb{C}$ をそれぞれ,
${}$
\begin{align}
\quad
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,i\,]}}
\quad
j = 0
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i }
:=
\dfrac{1}{ a_{ i \, , \, i } }
\ \boldsymbol{;}
\end{aligned}
\\[20pt]
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,ii\,]}}
\quad
j = 1
\quad \textsf{かつ} \quad
1 \leq i \leq n - 1
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i+1 }
:=
- \dfrac{ a_{ i \, , \, i+1 } }{ a_{ i \, , \, i } \cdot a_{ i+1 \, , \, i+1 } }
\ \boldsymbol{;}
\end{aligned}
\\[20pt]
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,iii\,]}}
\quad
j = 2
\quad \textsf{かつ} \quad
1 \leq i \leq n - 2
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i+2 }
:=
\dfrac{
1
}{
\prod\limits_{\nu=0}^{2}
a_{ i+\nu \, , \, i+\nu }
}
\left|
\begin{array}{cc}
a_{ i \, ,\, i+1 } & a_{ i \, , \, i+2 }
\\
a_{ i+1 \, , \, i+1 } & a_{ i+1 \, , \, i+2 }
\\
\end{array}
\right|
\ \boldsymbol{;}
\end{aligned}
\\[20pt]
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,iv\,]}}
\quad
3 \leq j \leq n - 1
\quad \textsf{かつ} \quad
1 \leq i \leq n - j
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i+j }
:=
\dfrac{
\left( -1 \right)^{j}
}{
\prod\limits_{\nu=0}^{j} a_{ i+\nu \, , \, i+\nu }
}
\left|
\begin{array}{cccccc}
a_{ i \, , \, i+1 } & a_{ i \, , \, i+2 } & \cdots & a_{ i \, , \, i+j-2 } & a_{ i \, , \, i+j-1 } & a_{ i \, , \, i+j }
\\
a_{ i+1 \, , \, i+1 } & a_{ i+1 \, , \, i+2 } & \cdots & a_{ i+1 \, , \, i+j-2 } & a_{ i+1 \, , \, i+j-1 } & a_{ i+1 \, , \, i+j }
\\
0 & a_{ i+2 \, , \, i+2 } & \cdots & a_{ i+2 \, , \, i+j-2 } & a_{ i+2 \, , \, i+j-1 } & a_{ i+2 \, , \, i+j }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ i+j-2 \, , \, i+j-2 } & a_{ i+j-2 \, , \, i+j-1 } & a_{ i+j-2 \, , \, i+j }
\\
{\Huge\boldsymbol{0}} & & & 0 & a_{ i+j-1 \, , \, i+j-1 } & a_{ i+j-1 \, , \, i+j }
\\
\end{array}
\right|
\end{aligned}
\end{align}
として定め,
\begin{align}
\qquad
\begin{aligned}
A'_{n}
:=
\left[
\begin{array}{ccc}
a'_{1 \, , \, 1} & \cdots & a'_{1 \, , \, n}
\\
{} & \ddots & \vdots
\\
{\Huge\boldsymbol{0}} & {} & a'_{n \, , \, n}
\\
\end{array}
\right]
\end{aligned}
\end{align}
とする。
帰納的に,$A'_{n} = A_{n}^{-1}$ となることを示していく。
$N \in \mathbb{Z} \cap \left[ 4 \boldsymbol{,} \, \infty \right)$ が与えられたとする。
$n = N$ の場合に $A_{n} A'_{n} = E_{n}$ が成立すると仮定する。このとき,
\begin{align}
\qquad
\begin{aligned}
A_{N+1} A'_{N+1}
&=
\left[
\begin{array}{c|c}
{} & a_{1 , \, N+1}
\\
\ \ {\Huge A_{N}} \ \ & \vdots
\\
{} & a_{N , \, N+1}
\\[5pt]
\hline
\boldsymbol{0}^{\mathsf{T}} & a_{N+1 , \, N+1}
\\
\end{array}
\right]
\left[
\begin{array}{c|c}
{} & a'_{1 , \, N+1}
\\
\ \ {\Huge A'_{N}} \ \ & \vdots
\\
{} & a'_{N , \, N+1}
\\[5pt]
\hline
\boldsymbol{0}^{\mathsf{T}} & a'_{N+1 , \, N+1}
\\
\end{array}
\right]
\\[15pt]
&=
\left[
\begin{array}{ccc|c}
a_{1 \, , \, 1} & \cdots & a_{1 , \, N} & a_{1 , \, N+1}
\\
{} & \ddots & \vdots & \vdots
\\
{\Huge \boldsymbol{0}} & {} & a_{N , \, N} & a_{N , \, N+1}
\\[5pt]
\hline
0 & \cdots & 0 & a_{N+1 , \, N+1}
\\
\end{array}
\right]
\left[
\begin{array}{ccc|c}
a'_{1 \, , \, 1} & \cdots & a'_{1 , \, N} & a'_{1 , \, N+1}
\\
{} & \ddots & \vdots & \vdots
\\
{\Huge \boldsymbol{0}} & {} & a'_{N , \, N} & a'_{N , \, N+1}
\\[5pt]
\hline
0 & \cdots & 0 & a'_{N+1 , \, N+1}
\\
\end{array}
\right]
\\[15pt]
&=
\left[
\begin{array}{c|c}
{} & \sum\limits_{\mu = 1}^{N+1} a_{ 1 , \, \mu } \ a'_{ \mu , \, N+1 }
\\
\ \ {\Huge A_{N} A'_{N}} \ \ & \vdots
\\
{} & \sum\limits_{\mu = N}^{N+1} a_{ N , \, \mu } \ a'_{ \mu , \, N+1 }
\\[5pt]
\hline
\boldsymbol{0}^{\mathsf{T}} & a_{N+1 , \, N+1} \ a'_{N+1 , \, N+1}
\\
\end{array}
\right]
\\[15pt]
&=
\left[
\begin{array}{c|c}
{} & \sum\limits_{\mu = 1}^{N+1} a_{ 1 , \, \mu } \ a'_{ \mu , \, N+1 }
\\
\ \ {\Huge E_{N}} \ \ & \vdots
\\
{} & \sum\limits_{\mu = N}^{N+1} a_{ N , \, \mu } \ a'_{ \mu , \, N+1 }
\\[5pt]
\hline
\boldsymbol{0}^{\mathsf{T}} & 1
\\
\end{array}
\right]
\ \boldsymbol{.}
\end{aligned}
\end{align}
${}$
また,各 $k \in \left\{ \, 1 \boldsymbol{,} \, \boldsymbol{\dots} \boldsymbol{,} \, N \, \right\}$ が与えられたとする。このとき,
${}$
- $k = N$ の場合:
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = k}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
\sum_{\mu = N}^{N+1} a_{ N , \, \mu } \ a'_{ \mu , \, N+1 }
\\[10pt]
&=
a_{ N , \, N } \ a'_{ N , \, N+1 }
+
a_{ N , \, N+1 } \ a'_{ N+1 , \, N+1 }
\\[10pt]
&=
a_{ N , \, N } \ a'_{ N , \, N+1 }
+
\dfrac{ a_{ N , \, N+1 } }{ a_{ N+1 , \, N+1 } }
\\[10pt]
&=
a_{ N , \, N } \ a'_{ N , \, N+1 }
-
a_{ N , \, N }
\cdot
\left( - \dfrac{ a_{ N , \, N+1 } }{ a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } } \right)
\\[10pt]
&=
a_{ N , \, N } \ a'_{ N , \, N+1 } - a_{ N , \, N } \ a'_{ N , \, N+1 }
\\[10pt]
&=
0
\ \boldsymbol{;}
\end{aligned}
\end{align}
${}$ - $k = N - 1$ の場合:
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = k}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
\sum_{\mu = N-1}^{N+1} a_{ N-1 , \, \mu } \ a'_{ \mu , \, N+1 }
\\[5pt]
&=
a_{ N-1 , \, N-1 } \ a'_{ N-1 , \, N+1 }
+
a_{ N-1 , \, N } \ a'_{ N , \, N+1 }
+
a_{ N-1 , \, N+1 } \ a'_{ N+1 , \, N+1 }
\\[10pt]
&=
a_{ N-1 , \, N-1 } \ a'_{ N-1 , \, N+1 }
+
a_{ N-1 , \, N }
\cdot
\left( - \dfrac{ a_{ N , \, N+1 } }{ a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } } \right)
+
\dfrac{ a_{ N-1 , \, N+1 } }{ a_{ N+1 , \, N+1 } }
\\[10pt]
&=
a_{ N-1 , \, N-1 } \ a'_{ N-1 , \, N+1 }
-
\dfrac{ 1 }{ a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
\left(
a_{ N-1 , \, N } \cdot a_{ N , \, N+1 }
-
a_{ N , \, N } \cdot a_{ N-1 , \, N+1 }
\right)
\\[10pt]
&=
a_{ N-1 , \, N-1 } \ a'_{ N-1 , \, N+1 }
-
\dfrac{ 1 }{ a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
\left|
\begin{array}{cc}
a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&=
a_{ N-1 , \, N-1 } \ a'_{ N-1 , \, N+1 }
-
a_{ N-1 , \, N-1 }
\cdot
\dfrac{ 1 }{ a_{ N-1 , \, N-1 } \cdot a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
\left|
\begin{array}{cc}
a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&=
a_{ N-1 , \, N-1 } \ a'_{ N-1 , \, N+1 }
-
a_{ N-1 , \, N-1 } \ a'_{ N-1 , \, N+1 }
\\[10pt]
&=
0
\ \boldsymbol{;}
\end{aligned}
\end{align}
${}$ - $k = N - 2$ の場合:
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = k}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
\sum_{\mu = N-2}^{N+1} a_{ N-2 , \, \mu } \ a'_{ \mu , \, N+1 }
\\[5pt]
&=
a_{ N-2 , \, N-2 } \ a'_{ N-2 , \, N+1 }
+
a_{ N-2 , \, N-1 } \ a'_{ N-1 , \, N+1 }
+
a_{ N-2 , \, N } \ a'_{ N , \, N+1 }
+
a_{ N-2 , \, N+1 } \ a'_{ N+1 , \, N+1 }
\\[10pt]
&=
a_{ N-2 , \, N-2 } \ a'_{ N-2 , \, N+1 }
\\[10pt]
&{\qquad \qquad}
+
\dfrac{ a_{ N-2 , \, N-1 } }{ a_{ N-1 , \, N-1 } \cdot a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
\left|
\begin{array}{cc}
a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
-
\dfrac{ a_{ N-2 , \, N } \cdot a_{ N , \, N+1 } }{ a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
+
\dfrac{ a_{ N-2 , \, N+1 } }{ a_{ N+1 , \, N+1 } }
\\[10pt]
&=
a_{ N-2 , \, N-2 } \ a'_{ N-2 , \, N+1 }
\\[10pt]
&{\qquad \qquad}
+
\dfrac{ 1 }{ a_{ N-1 , \, N-1 } \cdot a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
\left(
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
0 & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
-
a_{ N-1 , \, N-1 } \cdot a_{ N-2 , \, N } \cdot a_{ N , \, N+1 }
+
a_{ N-1 , \, N-1 } \cdot a_{ N , \, N } \cdot a_{ N-2 , \, N+1 }
\right)
\boldsymbol{,}
\end{aligned}
\end{align}
${}$
\begin{align}
\qquad
\begin{aligned}
&
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
0 & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
-
a_{ N-1 , \, N-1 } \cdot a_{ N-2 , \, N } \cdot a_{ N , \, N+1 }
+
a_{ N-1 , \, N-1 } \cdot a_{ N , \, N } \cdot a_{ N-2 , \, N+1 }
\\[10pt]
&{\qquad \qquad}=
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
0 & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
-
a_{ N-1 \, , \, N-1 }
\cdot
\left|
\begin{array}{ccc}
a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&{\qquad \qquad}=
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
0 & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
+
\left|
\begin{array}{ccc}
0 & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&{\qquad \qquad}=
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1, \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\end{aligned}
\end{align}
となるので,
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = k}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
a_{ N-2 , \, N-2 } \ a'_{ N-2 , \, N+1 }
+
\dfrac{ 1 }{ a_{ N-1 , \, N-1 } \cdot a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1, \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&=
a_{ N-2 , \, N-2 } \ a'_{ N-2 , \, N+1 }
-
a_{ N-2 , \, N-2 }
\cdot
\left(
- \dfrac{ 1 }{ a_{ N-2 , \, N-2 } \cdot a_{ N-1 , \, N-1 } \cdot a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } }
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1, \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\right)
\\[10pt]
&=
a_{ N-2 , \, N-2 } \ a'_{ N-2 , \, N+1 } - a_{ N-2 , \, N-2 } \ a'_{ N-2 , \, N+1 }
\\[10pt]
&=
0
\ \boldsymbol{;}
\end{aligned}
\end{align}
${}$ - $k \leq N - 3$ の場合:
${}$
数学的帰納法を用いる。
まず,
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = N}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
a_{ k , \, N } \ a'_{ N , \, N+1 }
+
a_{ k , \, N+1 } \ a'_{ N+1 , \, N+1 }
\\[10pt]
&=
a_{ k , \, N } \cdot \left( - \dfrac{ a_{ N , \, N+1 } }{ a_{ N , \, N } \cdot a_{ N+1 , \, N+1 } } \right)
+
\dfrac{a_{ k , \, N+1 }}{a_{ N+1 , \, N+1 }}
\\[10pt]
&=
\dfrac{ -1 }{ \prod\limits_{\nu = 0}^{ 1 } a_{ N+\nu , \, N+\nu } }
\left|
\begin{array}{cc}
a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\ \boldsymbol{,}
\end{aligned}
\end{align}
${}$
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = N-1}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
a_{ k , \, N-1 } \ a'_{ N-1 , \, N+1 }
+
\sum_{\mu = N}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
\\[10pt]
&=
a_{ k , \, N-1 }
\cdot
\dfrac{ \left( -1 \right)^{2} }{ \prod\limits_{\nu = 0}^{ 2 } a_{ N-1+\nu , \, N-1+\nu } }
\left|
\begin{array}{cc}
a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
+
\dfrac{ -1 }{ \prod\limits_{\nu = 0}^{ 1 } a_{ N+\nu , \, N+\nu } }
\left|
\begin{array}{cc}
a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&=
\dfrac{ 1 }{ \prod\limits_{\nu = 0}^{ 2 } a_{ N-1+\nu , \, N-1+\nu } }
\left(
a_{ k , \, N-1 }
\cdot
\left|
\begin{array}{cc}
a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
-
a_{ N-1 , \, N-1 }
\cdot
\left|
\begin{array}{cc}
a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\right)
\\[10pt]
&=
\dfrac{ 1 }{ \prod\limits_{\nu = 0}^{ 2 } a_{ N-1+\nu , \, N-1+\nu } }
\left(
\left|
\begin{array}{ccc}
a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
0 & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
+
\left|
\begin{array}{ccc}
0 & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\right)
\\[10pt]
&=
\dfrac{ 1 }{ \prod\limits_{\nu = 0}^{ 2 } a_{ N-1+\nu , \, N-1+\nu } }
\left|
\begin{array}{ccc}
a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\end{aligned}
\end{align}
となることから,
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = N-2}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
a_{ k , \, N-2 } \ a'_{ N-2 , \, N+1 }
+
\sum_{\mu = N-1}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
\\[10pt]
&=
a_{ k , \, N-2 }
\cdot
\dfrac{ \left( -1 \right)^{3} }{ \prod\limits_{\nu = 0}^{ 3 } a_{ N-2+\nu , \, N-2+\nu } }
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
+
\dfrac{ 1 }{ \prod\limits_{\nu = 0}^{ 2 } a_{ N-1+\nu , \, N-1+\nu } }
\left|
\begin{array}{ccc}
a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&=
\dfrac{ -1 }{ \prod\limits_{\nu = 0}^{ 3 } a_{ N-2+\nu , \, N-2+\nu } }
\left(
a_{ k , \, N-2 }
\cdot
\left|
\begin{array}{ccc}
a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
-
a_{ N-2 , \, N-2 }
\cdot
\left|
\begin{array}{ccc}
a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\right)
\\[10pt]
&=
\dfrac{ -1 }{ \prod\limits_{\nu = 0}^{ 3 } a_{ N-2+\nu , \, N-2+\nu } }
\left(
\left|
\begin{array}{cccc}
a_{ k , \, N-2 } & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
0 & a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
0 & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
+
\left|
\begin{array}{cccc}
0 & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-2 , \, N-2 } & a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
0 & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\right)
\\[10pt]
&=
\dfrac{ \left( -1 \right)^{3} }{ \prod\limits_{\nu = 1}^{ 4 } a_{ N-3+\nu , \, N-3+\nu } }
\left|
\begin{array}{cccc}
a_{ k , \, N-2 } & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-2 , \, N-2 } & a_{ N-2 , \, N-1 } & a_{ N-2 , \, N } & a_{ N-2 , \, N+1 }
\\
0 & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
0 & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\ \boldsymbol{.}
\end{aligned}
\end{align}
${}$
次に,各 $r \in \left\{ \, 3 ,\, \dots ,\, N-k \, \right\}$ に対して,等式
${}$
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = N-r+1}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
=
\dfrac{ \left( -1 \right)^{r} }{ \prod\limits_{\nu = 1}^{ r + 1 } a_{ N-r+\nu , \, N-r+\nu } }
\left|
\begin{array}{ccccccc}
a_{ k , \, N-r+1 } & a_{ k , \, N-r+2 } & a_{ k , \, N-r+3 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-r+1 , \, N-r+1 } & a_{ N-r+1 , \, N-r+2 } & a_{ N-r+1 , \, N-r+3 } & \cdots & a_{ N-r+1 , \, N-1 } & a_{ N-r+1 , \, N } & a_{ N-r+1 , \, N+1 }
\\
0 & a_{ N-r+2 , \, N-r+2 } & a_{ N-r+2 , \, N-r+3 } & \cdots & a_{ N-r+2 , \, N-1 } & a_{ N-r+2 , \, N } & a_{ N-r+2 , \, N+1 }
\\
0 & 0 & a_{ N-r+3 , \, N-r+3 } & \cdots & a_{ N-r+3 , \, N-1 } & a_{ N-r+3 , \, N } & a_{ N-r+3 , \, N+1 }
\\
{} & {} & \ddots & {} & \vdots & \vdots & \vdots
\\
{} & {} & {} & \ddots & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge{\boldsymbol{0}}} & {} & {} & {} & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\end{array}
\right|
\end{aligned}
\tag*{\textsf{[A]}}
\end{align}
が成り立つと仮定する。このとき,
\begin{align}
\qquad
\begin{aligned}
a_{ k , \, N-r } \ a'_{ N-r, \, N+1 }
&=
a_{ k , \, N-r }
\cdot
\dfrac{ \left( -1 \right)^{r+1} }{ \prod\limits_{\nu = 0}^{ r+1 } a_{ N-r+\nu , \, N-r+\nu } }
\left|
\begin{array}{cccccc}
a_{ N-r , \, N-r+1 } & a_{ N-r , \, N-r+2 } & \cdots & a_{ N-r , \, N-1 } & a_{ N-r , \, N } & a_{ N-r , \, N+1 }
\\
a_{ N-r+1 , \, N-r+1 } & a_{ N-r+1 , \, N-r+2 } & \cdots & a_{ N-r+1 , \, N-1 } & a_{ N-r+1 , \, N } & a_{ N-r+1 , \, N+1 }
\\
0 & a_{ N-r+2 , \, N-r+2 } & \cdots & a_{ N-r+2 , \, N-1 } & a_{ N-r+2 , \, N } & a_{ N-r+2 , \, N+1 }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge{\boldsymbol{0}}} & {} & {} & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\end{array}
\right|
\\[10pt]
&=
\dfrac{ \left( -1 \right)^{r+1} }{ \prod\limits_{\nu = 0}^{ r+1 } a_{ N-r+\nu , \, N-r+\nu } }
\left|
\begin{array}{ccccccc}
a_{ k , \, N-r } & a_{ k , \, N-r+1 } & a_{ k , \, N-r+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
0 & a_{ N-r , \, N-r+1 } & a_{ N-r , \, N-r+2 } & \cdots & a_{ N-r , \, N-1 } & a_{ N-r , \, N } & a_{ N-r , \, N+1 }
\\
0 & a_{ N-r+1 , \, N-r+1 } & a_{ N-r+1 , \, N-r+2 } & \cdots & a_{ N-r+1 , \, N-1 } & a_{ N-r+1 , \, N } & a_{ N-r+1 , \, N+1 }
\\
0 & 0 & a_{ N-r+2 , \, N-r+2 } & \cdots & a_{ N-r+2 , \, N-1 } & a_{ N-r+2 , \, N } & a_{ N-r+2 , \, N+1 }
\\
{} & {} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge{\boldsymbol{0}}} & {} & {} & {} & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\end{array}
\right|
\ \boldsymbol{,}
\end{aligned}
\end{align}
${}$
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = N-r+1}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
\dfrac{ \left( -1 \right)^{r} }{ \prod\limits_{\nu = 1}^{ r + 1 } a_{ N-r+\nu , \, N-r+\nu } }
\left|
\begin{array}{ccccccc}
a_{ k , \, N-r+1 } & a_{ k , \, N-r+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-r+1 , \, N-r+1 } & a_{ N-r+1 , \, N-r+2 } & \cdots & a_{ N-r+1 , \, N-1 } & a_{ N-r+1 , \, N } & a_{ N-r+1 , \, N+1 }
\\
0 & a_{ N-r+2 , \, N-r+2 } & \cdots & a_{ N-r+2 , \, N-1 } & a_{ N-r+2 , \, N } & a_{ N-r+2 , \, N+1 }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge{\boldsymbol{0}}} & {} & {} & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\end{array}
\right|
\\[10pt]
&=
\left( - a_{N-r ,\, N-r} \right)
\cdot
\dfrac{ \left( -1 \right)^{r+1} }{ \prod\limits_{\nu = 0}^{ r + 1 } a_{ N-r+\nu , \, N-r+\nu } }
\left|
\begin{array}{ccccccc}
a_{ k , \, N-r+1 } & a_{ k , \, N-r+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-r+1 , \, N-r+1 } & a_{ N-r+1 , \, N-r+2 } & \cdots & a_{ N-r+1 , \, N-1 } & a_{ N-r+1 , \, N } & a_{ N-r+1 , \, N+1 }
\\
0 & a_{ N-r+2 , \, N-r+2 } & \cdots & a_{ N-r+2 , \, N-1 } & a_{ N-r+2 , \, N } & a_{ N-r+2 , \, N+1 }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge{\boldsymbol{0}}} & {} & {} & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\end{array}
\right|
\\[10pt]
&=
\dfrac{ \left( -1 \right)^{r+1} }{ \prod\limits_{\nu = 0}^{ r + 1 } a_{ N-r+\nu , \, N-r+\nu } }
\left|
\begin{array}{cccccccc}
0 & a_{ k , \, N-r+1 } & a_{ k , \, N-r+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{N-r ,\, N-r} & a_{N-r ,\, N-r+1} & a_{N-r ,\, N-r+2} & \cdots & a_{N-r ,\, N-1} & a_{N-r ,\, N} & a_{N-r ,\, N+1}
\\
0 & a_{ N-r+1 , \, N-r+1 } & a_{ N-r+1 , \, N-r+2 } & \cdots & a_{ N-r+1 , \, N-1 } & a_{ N-r+1 , \, N } & a_{ N-r+1 , \, N+1 }
\\
0 & 0 & a_{ N-r+2 , \, N-r+2 } & \cdots & a_{ N-r+2 , \, N-1 } & a_{ N-r+2 , \, N } & a_{ N-r+2 , \, N+1 }
\\
{} & {} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge{\boldsymbol{0}}} & {} & {} & {} & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\end{array}
\right|
\end{aligned}
\end{align}
となるので,
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = N-r}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
a_{ k , \, N-r } \ a'_{ N-r, \, N+1 }
+
\sum_{\mu = N-r+1}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
\\[10pt]
&=
\dfrac{ \left( -1 \right)^{r+1} }{ \prod\limits_{\nu = 0}^{ r+1 } a_{ N-r+\nu , \, N-r+\nu } }
\left|
\begin{array}{ccccccc}
a_{ k , \, N-r } & a_{ k , \, N-r+1 } & a_{ k , \, N-r+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ N-r , \, N-r } & a_{ N-r , \, N-r+1 } & a_{ N-r , \, N-r+2 } & \cdots & a_{ N-r , \, N-1 } & a_{ N-r , \, N } & a_{ N-r , \, N+1 }
\\
0 & a_{ N-r+1 , \, N-r+1 } & a_{ N-r+1 , \, N-r+2 } & \cdots & a_{ N-r+1 , \, N-1 } & a_{ N-r+1 , \, N } & a_{ N-r+1 , \, N+1 }
\\
0 & 0 & a_{ N-r+2 , \, N-r+2 } & \cdots & a_{ N-r+2 , \, N-1 } & a_{ N-r+2 , \, N } & a_{ N-r+2 , \, N+1 }
\\
{} & {} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge{\boldsymbol{0}}} & {} & {} & {} & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\end{array}
\right|
\ \boldsymbol{.}
\end{aligned}
\end{align}
${}$
ゆえに,等式 $\textsf{[A]}$ が成り立つことから,$r = N - k$ を代入した式を考えると,
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = k}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
a_{ k , \, k } \ a'_{ k , \, N+1 }
+
\sum_{\mu = k+1}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
\ \boldsymbol{,}
\end{aligned}
\end{align}
${}$
\begin{align}
\qquad
\begin{aligned}
a_{ k , \, k } \ a'_{ k , \, N+1 }
&=
a_{ k , \, k }
\cdot
\dfrac{ \left( -1 \right)^{ N + 1 - k } }{ \prod\limits_{\nu=0}^{ N + 1 - k } a_{ k + \nu , \, k + \nu } }
\left|
\begin{array}{cccccc}
a_{ k , \, k+1 } & a_{ k , \, k+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ k+1 , \, k+1 } & a_{ k+1 , \, k+2 } & \cdots & a_{ k+1 , \, N-1 } & a_{ k+1 , \, N } & a_{ k+1 , \, N+1 }
\\
0 & a_{ k+2 , \, k+2 } & \cdots & a_{ k+2 , \, N-1 } & a_{ k+2 , \, N } & a_{ k+2 , \, N+1 }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge\boldsymbol{0}} & & & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&=
\dfrac{ \left( -1 \right)^{ N + 1 - k } }{ \prod\limits_{\nu=1}^{ N + 1 - k } a_{ k + \nu , \, k + \nu } }
\left|
\begin{array}{cccccc}
a_{ k , \, k+1 } & a_{ k , \, k+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ k+1 , \, k+1 } & a_{ k+1 , \, k+2 } & \cdots & a_{ k+1 , \, N-1 } & a_{ k+1 , \, N } & a_{ k+1 , \, N+1 }
\\
0 & a_{ k+2 , \, k+2 } & \cdots & a_{ k+2 , \, N-1 } & a_{ k+2 , \, N } & a_{ k+2 , \, N+1 }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge\boldsymbol{0}} & & & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\ \boldsymbol{,}
\end{aligned}
\end{align}
${}$
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = k+1}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
&=
\dfrac{ \left( -1 \right)^{N-k} }{ \prod\limits_{\nu = 1}^{ N-k+1 } a_{ k+\nu , \, k+\nu } }
\left|
\begin{array}{cccccc}
a_{ k , \, k+1 } & a_{ k , \, k+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ k+1 , \, k+1 } & a_{ k+1 , \, k+2 } & \cdots & a_{ k+1 , \, N-1 } & a_{ k+1 , \, N } & a_{ k+1 , \, N+1 }
\\
0 & a_{ k+2 , \, k+2 } & \cdots & a_{ k+2 , \, N-1 } & a_{ k+2 , \, N } & a_{ k+2 , \, N+1 }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge\boldsymbol{0}} & & & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\\[10pt]
&=
- \dfrac{ \left( -1 \right)^{N+1-k} }{ \prod\limits_{\nu = 1}^{ N+1-k } a_{ k+\nu , \, k+\nu } }
\left|
\begin{array}{cccccc}
a_{ k , \, k+1 } & a_{ k , \, k+2 } & \cdots & a_{ k , \, N-1 } & a_{ k , \, N } & a_{ k , \, N+1 }
\\
a_{ k+1 , \, k+1 } & a_{ k+1 , \, k+2 } & \cdots & a_{ k+1 , \, N-1 } & a_{ k+1 , \, N } & a_{ k+1 , \, N+1 }
\\
0 & a_{ k+2 , \, k+2 } & \cdots & a_{ k+2 , \, N-1 } & a_{ k+2 , \, N } & a_{ k+2 , \, N+1 }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ N-1 , \, N-1 } & a_{ N-1 , \, N } & a_{ N-1 , \, N+1 }
\\
{\Huge\boldsymbol{0}} & & & 0 & a_{ N , \, N } & a_{ N , \, N+1 }
\\
\end{array}
\right|
\ \boldsymbol{.}
\end{aligned}
\end{align}
よって,
\begin{align}
\qquad
\begin{aligned}
\sum_{\mu = k}^{N+1} a_{ k , \, \mu } \ a'_{ \mu , \, N+1 }
=
0
\, \boldsymbol{.}
\end{aligned}
\end{align}
${}$
したがって,以上のことから,$A_{N+1} A'_{N+1} = E_{N+1}$ となるので,
\begin{align}
\qquad
\begin{aligned}
A_{n} A'_{n}
&=
E_{n}
\, \boldsymbol{,}
\end{aligned}
\end{align}
すなわち,
\begin{align}
\qquad
\begin{aligned}
A'_{n}
&=
A_{n}^{-1}
\, \boldsymbol{.}
\end{aligned}
\end{align}
${}$
公式
以上の計算から,次の公式が成り立つ。
(正則上三角行列の逆行列公式)
$n$ 次複素行列$A \in \mathbb{C}^{n \times n}$ を,正則な上三角行列とし,
\begin{align}
\qquad
\begin{aligned}
A
:=
\left[
\begin{array}{ccc}
a_{1 \, , \, 1} & \cdots & a_{1 \, , \, n}
\\
{} & \ddots & \vdots
\\
{\Huge\boldsymbol{0}} & & a_{n \, , \, n}
\\
\end{array}
\right]
\end{aligned}
\end{align}
と表されているとする。
また,各 $i \in \left\{ 1 \boldsymbol{,} \, \boldsymbol{\dots} \boldsymbol{,} \, n \right\}$ および 各 $j \in \left\{ 0 \boldsymbol{,} \, \boldsymbol{\dots} \boldsymbol{,} \, n-1 \right\}$ に対して,$a'_{i \, , \, i+j} \in \mathbb{C}$ をそれぞれ,
${}$
\begin{align}
\quad
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,i\,]}}
\quad
j = 0
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i }
:=
\dfrac{1}{ a_{ i \, , \, i } }
\ \boldsymbol{;}
\end{aligned}
\\[20pt]
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,ii\,]}}
\quad
j = 1
\quad \textsf{かつ} \quad
1 \leq i \leq n - 1
\quad \textsf{かつ} \quad
n \geq 2
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i+1 }
:=
- \dfrac{ a_{ i \, , \, i+1 } }{ a_{ i \, , \, i } \cdot a_{ i+1 \, , \, i+1 } }
\ \boldsymbol{;}
\end{aligned}
\\[20pt]
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,iii\,]}}
\quad
j = 2
\quad \textsf{かつ} \quad
1 \leq i \leq n - 2
\quad \textsf{かつ} \quad
n \geq 3
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i+2 }
:=
\dfrac{
1
}{
\prod\limits_{\nu=0}^{2}
a_{ i+\nu \, , \, i+\nu }
}
\left|
\begin{array}{cc}
a_{ i \, ,\, i+1 } & a_{ i \, , \, i+2 }
\\
a_{ i+1 \, , \, i+1 } & a_{ i+1 \, , \, i+2 }
\\
\end{array}
\right|
\ \boldsymbol{;}
\end{aligned}
\\[20pt]
&
\begin{aligned}
&
\boldsymbol{\textsf{[\,iv\,]}}
\quad
3 \leq j \leq n - 1
\quad \textsf{かつ} \quad
1 \leq i \leq n - j
\quad \textsf{かつ} \quad
n \geq 4
\quad \textsf{ならば,}
\\[10pt]
&{\qquad \quad}
a'_{ i \, , \, i+j }
:=
\dfrac{
\left( -1 \right)^{j}
}{
\prod\limits_{\nu=0}^{j} a_{ i+\nu \, , \, i+\nu }
}
\left|
\begin{array}{cccccc}
a_{ i \, , \, i+1 } & a_{ i \, , \, i+2 } & \cdots & a_{ i \, , \, i+j-2 } & a_{ i \, , \, i+j-1 } & a_{ i \, , \, i+j }
\\
a_{ i+1 \, , \, i+1 } & a_{ i+1 \, , \, i+2 } & \cdots & a_{ i+1 \, , \, i+j-2 } & a_{ i+1 \, , \, i+j-1 } & a_{ i+1 \, , \, i+j }
\\
0 & a_{ i+2 \, , \, i+2 } & \cdots & a_{ i+2 \, , \, i+j-2 } & a_{ i+2 \, , \, i+j-1 } & a_{ i+2 \, , \, i+j }
\\
{} & {} & \ddots & \vdots & \vdots & \vdots
\\
{} & {} & {} & a_{ i+j-2 \, , \, i+j-2 } & a_{ i+j-2 \, , \, i+j-1 } & a_{ i+j-2 \, , \, i+j }
\\
{\Huge\boldsymbol{0}} & & & 0 & a_{ i+j-1 \, , \, i+j-1 } & a_{ i+j-1 \, , \, i+j }
\\
\end{array}
\right|
\end{aligned}
\end{align}
として定め,
\begin{align}
\qquad
\begin{aligned}
A'
:=
\left[
\begin{array}{ccc}
a'_{1 \, , \, 1} & \cdots & a'_{1 \, , \, n}
\\
{} & \ddots & \vdots
\\
{\Huge\boldsymbol{0}} & {} & a'_{n \, , \, n}
\\
\end{array}
\right]
\end{aligned}
\end{align}
とする。
このとき,$A'$ は $A$ の逆行列 $A^{-1}$ となる。
コメント
計算の煩雑さもさることながら,公式の形そのものが難しいですね。
ちなみにこの公式は,現実的な問題処理 ($n$が大きい場合) では計算量が膨大になって使い物になりません。
疎行列あたりでふわふわと計算するか,$n \leq 5$ ぐらいで計算演習に利用することをオススメします。