複素関数$f(z)$の微分の定義を確認しましょう.
領域$D\subseteq\C,\,f:D\to \C$とする. $f$が$z=z_0\in D$において
$$
A=\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}
$$
が存在するとき, $f$は$z=z_0$で(複素)微分可能であると言い, $A$を$f$の$z=z_0$における微分係数と呼ぶ.
また$D$の任意の点$z$で$f$が微分可能であるとき, $f$は$D$上正則と言う.
領域$D\subseteq\C,\,f:D\to \C$とする. $f$が$D$上正則であることは次と同値である.
$z=x+yi\in D\,(x,\,y\in\R)$としたとき,
$$
f(z)=u(x,\,y)+v(x,\,y)i\,(u\equiv\Re f,\,v\equiv\Im f)
$$
とする. このとき, Cauchy-Riemann方程式:
$$
\left\{\begin{align*}
\frac{\partial u}{\partial x} &=\frac{\partial v}{\partial y}\\
\frac{\partial u}{\partial y} &=-\frac{\partial v}{\partial x}
\end{align*}\right.
$$
を満たす.
このとき, $\displaystyle f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}\,(z=x+yi\in D)$が成り立つ.
確認として$f(z)=|z|^2$の停留点を求めましょう.
$z=x+yi$とおくと, $f(z)=x^2+y^2$なので
$$
\frac{\partial u}{\partial x}=2x=0=\frac{\partial v}{\partial y},\,\frac{\partial u}{\partial y}=2y=0=-\frac{\partial v}{\partial x}
$$
より$z=0$でのみ$f$は正則になり, $z\neq0$での停留点が確認できない問題が発生します. これは主に$\bar{z},\,|z|$を含み$z$の式で表せない複素関数で起こります.
通常の複素関数の微分では$(x,\,y)$の組で微分をしていましたが, $(z,\,\bar{z})$と変数置換して微分を定義したものがウィルティンガー微分です.
$z=x+yi$を用いて表される複素関数$f(z)$が実微分可能とすると
$$
\d f=\frac{\partial f}{\partial x}\d x+\frac{\partial f}{\partial y}\d y
$$
が成り立ちます.
このとき$z=x+yi,\,\bar{z}=x-yi$と定数置換すると
$$
\d z=\d x+i\d y,\,\d \bar{z}=\d x-i\d y\Longleftrightarrow \d x=\frac{1}{2}(\d z+\d \bar{z}),\,\d y=\frac{1}{2i}(\d z-\d \bar{z})
$$
となり, これを全微分の式に代入すると
$$
\d f=\frac{\partial f}{\partial x}\frac{\d z+\d \bar{z}}{2}+\frac{\partial f}{\partial y}\frac{\d z-\d \bar{z}}{2i}
=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i\frac{\partial f}{\partial y}\right)\d z+\frac{1}{2}\left(\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\right)\d \bar{z}
$$
ここで$z,\,\bar{z}$を独立な変数と見ると
$$
\d f=\frac{\partial f}{\partial z}\d z+\frac{\partial f}{\partial \bar{z}}\d \bar{z}
$$
なので
$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i\frac{\partial f}{\partial y}\right),\,\frac{\partial f}{\partial\bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\right)
$$
とできます.
$D\subseteq\C,\,f:D\to\C$とする. $f(z)\,(z=x+yi)$が$D$上$(x,\,y)$で微分可能とする.
$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i\frac{\partial f}{\partial y}\right),\,\frac{\partial f}{\partial\bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\right)
$$
ここで$z,\,\bar{z}$を独立な変数として扱ってもよいか確認します.
$$
\frac{\d z}{\d z}=\frac{1}{2}\left(\frac{\partial (x+yi)}{\partial x}-i\frac{\partial (x+yi)}{\partial y}\right)=\frac{1}{2}(1-i\cdot i)=1
$$
$$
\frac{\d \bar{z}}{\d \bar{z}}=\frac{1}{2}\left(\frac{\partial (x-yi)}{\partial x}+i\frac{\partial (x-yi)}{\partial y}\right)=\frac{1}{2}(1+i\cdot (-i))=1
$$
$$
\frac{\d \bar{z}}{\d z}=\frac{1}{2}\left(\frac{\partial (x-yi)}{\partial x}-i\frac{\partial (x-yi)}{\partial y}\right)=\frac{1}{2}(1-i\cdot (-i))=0
$$
$$
\frac{\d z}{\d \bar{z}}=\frac{1}{2}\left(\frac{\partial (x+yi)}{\partial x}+i\frac{\partial (x+yi)}{\partial y}\right)=\frac{1}{2}(1+i\cdot i)=0
$$
より, $z,\,\bar{z}$は独立した変数として偏微分しても大丈夫です.
$D\subseteq\C,\,f:D\to\C$とする. $f(z)\,(z=x+yi)$が$D$上$(x,\,y)$で微分可能とする.
$f$がCR式を満たす($f$正則)$\Longleftrightarrow \dfrac{\partial f}{\partial \bar{z}}=0$
$z=x+yi\in D$とおき, $f(z)=u(x,\,y)+v(x,\,y)i$とすると
$$
\frac{\partial f}{\partial\bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\right)
=\frac{1}{2}\left(\frac{\partial (u+vi)}{\partial x}+i\frac{\partial (u+vi)}{\partial y}\right)
=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)
$$
$f$のCR式は
$$
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0,\,\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0
$$
なので, $f$が$D$上正則と$\dfrac{\partial f}{\partial \bar{z}}=0$は同値
$$
\frac{\partial f}{\partial\bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\right)=0\qquad\therefore \frac{\partial f}{\partial x}=-i\frac{\partial f}{\partial y}
$$
よって
$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i\frac{\partial f}{\partial y}\right)=\frac{\partial f}{\partial x}
=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=f'(z)
$$
が成り立つ.
$D\subseteq\C,\,f:D\to\C$とする. $f(z)\,(z=x+yi)$が$D$上$(x,\,y)$で微分可能とする.
$f$がCR式を満たす($f$正則)$\Longrightarrow f'(z)=\dfrac{\partial f}{\partial z}$
命題2より
$$
\frac{\partial f}{\partial\bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\right)=0\Longleftrightarrow\frac{\partial f}{\partial x}=-i\frac{\partial f}{\partial y}
$$
なので
$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i\frac{\partial f}{\partial y}\right)=\frac{\partial f}{\partial x}
=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=f'(z)
$$
が成り立つ.
$$ \overline{\left(\frac{\partial f}{\partial z}\right)}=\frac{\partial}{\partial \bar{z}}\overline{(f(z))} $$
$z=x+yi\in D$とおき, $f(z)=u(x,\,y)+v(x,\,y)i$とすると
$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i\frac{\partial f}{\partial y}\right)
=\frac{1}{2}\left(\frac{\partial (u+vi)}{\partial x}-i\frac{\partial (u+vi)}{\partial y}\right)
=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)-\frac{i}{2}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)
$$
より
$$
\overline{\left(\frac{\partial f}{\partial z}\right)}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)
$$
$$
\frac{\partial}{\partial \bar{z}}\overline{(f(z))}=\frac{1}{2}\left(\frac{\partial \bar{f}}{\partial x}+i\frac{\partial \bar{f}}{\partial y}\right)
=\frac{1}{2}\left(\frac{\partial (u-vi)}{\partial x}+i\frac{\partial (u-vi)}{\partial y}\right)
=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)
$$
よって
$$
\overline{\left(\frac{\partial f}{\partial z}\right)}=\frac{\partial}{\partial \bar{z}}\overline{(f(z))}
$$
$f(z)=|z|^2$とする. $f(z)=z\bar{z}$より
$$
\frac{\partial f}{\partial z}=\bar{z},\,\frac{\partial f}{\partial \bar{z}}=z
$$
よって, $\frac{\partial f}{\partial z}=0,\,\frac{\partial f}{\partial \bar{z}}=0$を解いた停留点は$(z,\,\bar{z})=(0,\,0)$となる. また$f$の複素Hessianは
$$
\det\begin{bmatrix}
\frac{\partial^2 f(0,\,0)}{\partial z^2} & \frac{\partial^2 f(0,\,0)}{\partial z\partial \bar{z}}\\
\frac{\partial^2 f(0,\,0)}{\partial \bar{z}\partial z} & \frac{\partial^2 f(0,\,0)}{\partial \bar{z}^2}
\end{bmatrix}
=\det\begin{bmatrix}
0 & 1\\
1 & 0
\end{bmatrix}=-1\neq0
$$
で$(z,\,\bar{z})=(0,\,0)$は$f$の停留点であることが分かりました.
$D\subseteq\C^n,\,f:D\to\C^n,\,\mathbf{z}=(z_1,\,\cdots,\,z_n)\in D,\,z_k=x_k+y_k i,\,x_k,\,y_k\in\R\,(1\leq k\leq n)$とする.
$f(\mathbf{z})$が$D$上各$(x_k,\,y_k)$で微分可能ならば
$$
\frac{\partial f}{\partial \mathbf{z}}=\left(\frac{\partial f}{\partial z_1},\,\cdots,\,\frac{\partial f}{\partial z_n}\right)
=\left(\frac{1}{2}\left(\frac{\partial f}{\partial x_1}-i\frac{\partial f}{\partial y_1}\right),\,\cdots,\,\frac{1}{2}\left(\frac{\partial f}{\partial x_n}-i\frac{\partial f}{\partial y_n}\right)\right)
$$
$$
\frac{\partial f}{\partial \bar{\mathbf{z}}}=\left(\frac{\partial f}{\partial \bar{z}_1},\,\cdots,\,\frac{\partial f}{\partial \bar{z}_n}\right)
=\left(\frac{1}{2}\left(\frac{\partial f}{\partial x_1}+i\frac{\partial f}{\partial y_1}\right),\,\cdots,\,\frac{1}{2}\left(\frac{\partial f}{\partial x_n}+i\frac{\partial f}{\partial y_n}\right)\right)
$$
となる.
$z_k=x_k+y_k i\in \C,\,x_k,\,y_k\in\R\,(1\leq k\leq n)$とおく.
$$
d z_k=\d x_k+i\d y_k,\,d \bar{z}_k=\d x_k-i\d y_k\Longleftrightarrow \d x_k=\frac{\d z+\d \bar{z}}{2},\,\d y_k=\frac{\d z-\d \bar{z}}{2i}
$$
$$
\d f=\sum_{k=1}^n \left(\frac{\partial f}{\partial x_k}\d x_k+\frac{\partial f}{\partial y_k}\d y_k\right)
=\sum_{k=1}^n \left\{\frac{1}{2}\left(\frac{\partial f}{\partial x_k}-i\frac{\partial f}{\partial y_k}\right)\d z_k+\frac{1}{2}\left(\frac{\partial f}{\partial x_k}+i\frac{\partial f}{\partial y_k}\right)\d \bar{z}\right\}
$$
一方
$$
\frac{\partial f}{\partial \mathbf{z}}=\left(\frac{\partial f}{\partial z_1},\,\cdots,\,\frac{\partial f}{\partial z_n}\right),\,\frac{\partial f}{\partial \bar{\mathbf{z}}}=\left(\frac{\partial f}{\partial \bar{z}_1},\,\cdots,\,\frac{\partial f}{\partial \bar{z}_n}\right)
$$
$$
\d \mathbf{z}=(\d z_1,\,\cdots,\,\d z_n)^t,\,\d \bar{\mathbf{z}}=(\d \bar{z}_1,\,\cdots,\,\d \bar{z}_n)^t
$$
と定め, $\mathbf{z},\,\bar{\mathbf{z}}$を独立な変数と見ると, $\displaystyle\d f=\frac{\partial f}{\partial \mathbf{z}}\d\mathbf{z}+\frac{\partial f}{\partial\bar{\mathbf{z}}}\d \bar{\mathbf{z}}$が成り立つ.
よって
$$
\frac{\partial f}{\partial \bar{\mathbf{z}}}=\left(\frac{\partial f}{\partial \bar{z}_1},\,\cdots,\,\frac{\partial f}{\partial \bar{z}_n}\right)
=\left(\frac{1}{2}\left(\frac{\partial f}{\partial x_1}+i\frac{\partial f}{\partial y_1}\right),\,\cdots,\,\frac{1}{2}\left(\frac{\partial f}{\partial x_n}+i\frac{\partial f}{\partial y_n}\right)\right)
$$
を得る.
余談として$f(x+yi)=(3x^2+y^2-3x^2y+y^3)+(x^3-3xy^2-2xy)i$で
$3x^2+y^2-3x^2y+y^3$の極値は$(0,\,0)$: 極小値, $(0,\,-2/3),\,(\sqrt{5/3},\,1),\,(-\sqrt{5/3},\,1)$:鞍点
$x^3-3xy^2-2xy$の極値は$(0,\,0),\,(0,\,-2/3)$:鞍点
なので$f(z)$の停留点は$\Re f,\,\Im f$の極値か鞍点になります.