※リーマンゼータ値しか扱いません。
$$\sum_{n=2}^{\infty}(-1)^n\zeta(n)x^{n}=x\psi(x+1)+\gamma x$$
$$\sum_{n=2}^{\infty}\frac{\zeta(n)-1}{n}=1-\gamma$$
$$\sum_{n=2}^{\infty}\big(\zeta(n)-1\big)=1$$
$$\sum_{n=2}^{\infty}\frac{(-1)^n \zeta(n)}{n+1}=1-\frac12\log2\pi+\frac12\gamma$$
$$\sum_{n=2}^{\infty}\frac{(-1)^n(\zeta(n)-1)}{n}=-1+\log2+\gamma$$
$$\sum_{n=2}^{\infty}(-1)^n\big(\zeta(n)-1\big)=\frac12$$
$$\sum_{n=2}^{\infty}\frac{\zeta(n)}{2^n}=\log2$$
$$\sum_{n=2}^{\infty}\frac{(-1)^n\zeta(n)}{2^n}=1-\log2$$
$$\sum_{n=2}^{\infty}\frac{(n-1)\zeta(n)} {2^n}=\frac{\pi^2}8$$
$$\sum_{n=2}^{\infty}\frac{\zeta(n)}{n 2^n}=\frac12\log\pi-\frac12\gamma$$
$$\sum_{n=1}^{\infty}\frac{\zeta(n)}{(n+1)2^n}=3\log A-\frac7{12}\log2-\frac14\gamma$$
$$\sum_{n=2}^{\infty}\frac{\zeta(n)}{(n+1)4^n}=\log\Gamma\left(\frac34\right)-\frac18\gamma-\frac14\log2-\frac12\log\pi-\frac1{\pi}\beta(2)+\frac92\log A$$
$$\sum_{n=2}^{\infty}\frac{\zeta(n)}{(n+2)4^n}=\log\Gamma\left(\frac34\right)+\frac16\gamma-\frac14\log2\pi-\frac2{\pi}\beta(2)+\frac{35}8\frac1{\pi^2}\zeta(3)-\frac8{\pi^3}\beta’(3)+\log A$$
$$\sum_{n=1}^{\infty}\zeta(2n)x^{2n}=-\frac12\pi x\cot\pi x+\frac12$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n)}{n}x^{2n}=\log\frac{\pi x}{\sin\pi x}$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n)}{n(2n+1)}=\log2\pi-1$$
$$\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\zeta(2n)}{n(2n+1)}=1-\log2\pi+\frac5{12}\pi+\frac1{2\pi}\mathrm{Li}_2\big(e^{-2\pi}\big)$$
$$\sum_{n=1}^{\infty}\frac{\zeta(4n-2)}{2^{4n-2}}=\frac{\pi}8\frac{e^{\pi}+1}{e^{\pi}-1}$$
$$\sum_{n=1}^{\infty}\frac{n\zeta(2n)}{2^{2n}}=\frac{\pi^2}{16}$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n)-1}{n}=\log2$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n)}{(2n+1)2^{2n}}=\frac12(1-\log2)$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n)}{(2n+1)4^{2n}}=\frac12-\frac14\log2-\frac{1}{\pi}\beta(2)$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n)}{(n+1)2^{2n}}=\frac12-\log2+\frac72\frac1{\pi^2}\zeta(3)$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n)}{(n+1)4^{2n}}=\frac12-\frac12\log2-\frac4{\pi}\beta(2)+\frac{35}4\frac1{\pi^2}\zeta(3)$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n+1)}{2^{2n+1}}=\log2-\frac12$$
$$\sum_{n=1}^{\infty}\frac{\zeta(2n+1)}{(2n+1)2^{2n}}=\log2-\gamma$$
$$\sum_{n=1}^{\infty}\frac{(2n+1)\zeta(2n+1)}{2^{2n+1}}=\log2$$