1

階乗冪と関数の離散化

133
0
$$$$

自然数を与えたとき,整数値を返す関数(数列)を考察したい.
有理数係数多項式関数についてと,多項式関数ではない場合をそれぞれ考える.
考えるための道具としてマクローリン展開の離散版を導入する.
なお,本稿では$0\in\mathbb{N}$とする.

(下降)階乗冪

\begin{align} x^\underline{n} = x\cdot(x-1)\cdots(x-n+2)\cdot(x-n+1) \end{align}

\begin{align} x^\underline{1}& = x\\ x^\underline{2}& = x(x-1)\\ x^\underline{3}& = x(x-1)(x-2) \end{align}

差分作用素

\begin{align} \Delta f(x) = f(x+1)-f(x) \end{align}

\begin{align} \Delta x^\underline{2}& = (x+1)^\underline{2}-x^\underline{2}\\ & = (x+1)\cdot x-x\cdot(x-1)\\ & = 2x\\ & = 2x^\underline{1}\\ \Delta x^\underline{3}& = (x+1)^\underline{3}-x^\underline{3}\\ & = (x+1)\cdot x\cdot(x-1)-x\cdot(x-1)\cdot(x-2)\\ & = 3x\cdot(x-1)\\ & = 3x^\underline{2}\\ \end{align}

\begin{align} \Delta x^\underline{n}=nx^\underline{n-1} \end{align}

\begin{align} \Delta x^\underline{n}& = (x+1)^\underline{n}-x^\underline{n}\\ & = (x+1)\cdot\textcolor{red}{x\cdots(x-n+3)\cdot(x-n+2)}-\textcolor{blue}{x\cdot(x-1)\cdots(x-n+2)}(x-n+1)\\ &=(x+1)\cdot\textcolor{red}{x^\underline{n-1}}-\textcolor{blue}{x^\underline{n-1}}\cdot(x-n+1)\\ &=\{(x+1)-(x-n+1)\}\cdot x^\underline{n-1}\\ &=nx^\underline{n-1} \end{align}

\begin{align} f(x)\in\mathbb{C}[x]\Rightarrow f(x)=\sum_{n=0}^{\deg f}\frac{\Delta^nf(0)}{n!}x^\underline{n} \end{align}

$f(x)$の次数に関する帰納法で示す.
\begin{align} \deg f=0\Rightarrow f(x)=f(0)=\frac{\Delta^0f(0)}{0!}x^\underline{0}=\sum_{n=0}^{\deg f}\frac{\Delta^nf(0)}{n!}x^\underline{n} \end{align}
$\deg f=k$で成立すると仮定.
$f(x)\in\mathbb{C}[x]$$\deg f=k+1$を満たすとき, $\deg\Delta f=k$より,
\begin{align} \Delta f(x)&=\sum_{n=0}^{k}\frac{\Delta^n\Delta f(0)}{n!}x^\underline{n}\\ &=\sum_{n=0}^{k}\frac{\Delta^{n+1} f(0)}{n!}\cdot\frac{1}{n+1}\Delta x^\underline{n+1}\\ &=\Delta\sum_{n=0}^{k}\frac{\Delta^{n+1} f(0)}{(n+1)!}x^\underline{n+1}\\ &=\Delta\sum_{n=1}^{k+1}\frac{\Delta^{n} f(0)}{n!}x^\underline{n}\\ \end{align}
よって,
\begin{align} &\Delta\left(f(x)-\sum_{n=1}^{k+1}\frac{\Delta^{n} f(0)}{n!}x^\underline{n}\right)=0\\ \Rightarrow &f(x)-\sum_{n=1}^{k+1}\frac{\Delta^{n} f(0)}{n!}x^\underline{n}=\mathrm{const.}\\ \Rightarrow &f(x)-\sum_{n=1}^{k+1}\frac{\Delta^{n} f(0)}{n!}x^\underline{n}=f(0)\\ \Rightarrow &f(x)=f(0)+\sum_{n=1}^{k+1}\frac{\Delta^{n} f(0)}{n!}x^\underline{n}=\sum_{n=0}^{k+1}\frac{\Delta^{n} f(0)}{n!}x^\underline{n} \end{align}
帰納法により示された.

\begin{align} \{f(x)\in\mathbb{Q}[x]|f(\mathbb{N})\subset\mathbb{Z}\}=\sum_{n=0}^\infty\mathbb{Z}\frac{x^\underline{n}}{n!} \end{align}

$\subset$ は定理より従う.
任意の$x,n\in\mathbb{N}$に対して,
\begin{align} \frac{x^\underline{n}}{n!}= \begin{cases} 0\in\mathbb{Z} & (x < n)\\ \binom{x}{n}\in\mathbb{Z} & (x\geq n) \end{cases} \end{align}
よって,$\supset$も分かる.

\begin{align} f(x)\in\mathbb{Q}[[x]], f(\mathbb{N})\subset\mathbb{Z} \Rightarrow f(x)=\sum_{n=0}^\infty\frac{\Delta^nf(0)}{n!}x^\underline{n}\ (x\geq 0) \end{align}

\begin{align} 2^x&=\sum_{n=0}^\infty\frac{1}{n!}x^\underline{n}\\ 2^{x/2}\cos\left(\frac{\pi x}{4}\right)&=\sum_{n=0}^\infty\frac{(-1)^n}{(2n)!}x^\underline{2n}\\ 2^{x/2}\sin\left(\frac{\pi x}{4}\right)&=\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)!}x^\underline{2n+1} \end{align}

投稿日:2023430

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中