滑らかなベクトル値関数$(f_1,f_2)(u,v), (g_1,g_2)(u,v)$に対して
$$\frac{\partial}{\partial u}\det \qty(\begin{array}{cc}
f_1 & f_2\\
g_1 & g_2
\end{array}) = \det \qty(\begin{array}{cc}
\frac{\partial}{\partial u}(f_1 & f_2)\\
g_1 & g_2
\end{array})+\det \qty(\begin{array}{cc}
f_1 & f_2\\
\frac{\partial}{\partial u}(g_1 & g_2)
\end{array})$$
$$\begin{array}{rcl} \frac{\partial}{\partial u}\det \qty(\begin{array}{cc} f_1 & f_2\\ g_1 & g_2 \end{array}) &=& \frac{\partial}{\partial u}(f_1g_2-f_1g_1)\\ &=& \det \qty(\begin{array}{cc} \frac{\partial}{\partial u}(f_1 & f_2)\\ g_1 & g_2 \end{array})+\det \qty(\begin{array}{cc} f_1 & f_2\\ \frac{\partial}{\partial u}(g_1 & g_2) \end{array}) \end{array}$$
あんま意味なさそう