積の行列式を行列式の積で表せるのは有名事実であるが,導出はかなり面倒である.
そこで,私が昔思いついた,レビ・チビタ記号を用いた解法を紹介する.
日本語はおろか,英語で検索してもヒットしないので,オリジナルだと思う.
(もし,noteで同じ内容の記事を見つけたならばそれは私の昔の記事で,少しおかしいところがあるため参考にしないほうが良い.)
また,本記事では一貫してアインシュタインの縮約を適用する.
まず,イメージを持ってもらうために,簡単な3次元の場合に限定して導出してみる.
とても簡単に導出できた.もちろん逆を辿っても成立する.
()に特に意味はないが,内積を主張するために付けておいた.
本題である一般化を証明する.