Notation: βr=(2rr)22r,G:Catalan′sConstant
1 ∑n=1∞(−1)n−1(4n−1)(2n)3βn3∑m=0n−1(−1)mβm3=Γ(18)2Γ(38)248π
2 ∑n=1∞(−1)n−1(2n)3βn3∑m=0n−1(−1)m(4m+1)βm3=Γ(18)2Γ(38)296π
3 ∑n=1∞(−1)n−1(4n−1)(2n)3βn3∑m=0n−1(4m+1)βm4=π2
4 ∑n=1∞(−1)n−1(4n−1)(2n)3βn3∑m=0n−1βm3=Γ(14)432π
5 ∑n=1∞(−1)n−1(4n−1)(2n)3βn3∑m=0n−1(−1)m(4m+1)βm5=Γ(14)48π2
6 ∑n=0∞βn3(2G+∑m=1n1(2m)2βm2)=Γ(14)48π
7 ∑n=1∞1(2n)3βn3(∑m=0n−1βm2)2=Γ(14)416
8 ∑n=0∞βn44n+1(72ζ(3)+∑m=1n4m−1(2m)4βm4)=117680Γ(14)8π2
9 ∑n=1∞1(4n−1)(2n)4βn4∑m=0n−1(4m+1)βm4=17680Γ(14)8π2
10 ∑n=0∞βn44n+1=Γ(14)880π5
11 ∑n=0∞1(2n+1)2(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑m=0n(−1)m(4m+1)βm3)+∑n=1∞1(2n)2(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑m=0n−1(−1)m(4m+1)βm3)=74ζ(3)
12 ∑n=0∞1(2n+1)2(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑m=0n(4m+1)βm4)+∑n=1∞1(2n)2(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑m=0n−1(4m+1)βm4)=π316
13 ∑n=0∞1(2n+1)3(72ζ(3)+∑m=1n4m−1(2m)4βm4)(∑m=0n(4m+1)βm4)+∑n=1∞1(2n)3(72ζ(3)+∑m=1n4m−1(2m)4βm4)(∑m=0n−1(4m+1)βm4)=9316ζ(5)
14 ∑n=0∞(4n+1)(13)nβn5(76)n(72ζ(3)+∑m=1n4m−1(2m)4βm4)=32723Γ(13)12π5
15 ∑n=0∞(4n+1)βn4∑2n<m(−1)m−1m2=7ζ(3)π2
16 ∑n=0∞(−1)n(4n+1)βn3(∑n<m(−1)m−1(4m−1)(2m)3βm3)2=π2∑n=0∞βn2n+1∑m=0nβm2m+1
17 ∑n=0∞(4n+1)βn4(∑n<m(−1)m−1(4m−1)(2m)3βm3)2=72ζ(3)
18 ∑n=0∞(−1)n(4n+1)βn5(∑n<m(−1)m−1(4m−1)(2m)3βm3)2=π2∑n=0∞1(2n+1)2βn∑m=0nβm3
18 ∑n=0∞((4n+1)βn4(2G+∑m=1n1(2m)2βm2)2−4n+3(2n+1)4βn4(∑m=0nβm2)2)=π2ln24
19 ∑n=0∞(−1)n(4n+1)βn3(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑n<m(−1)m−1(4m−1)(2m)2(2m−1)βm)=74ζ(3)
20 ∑n=0∞(4n+1)βn4(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑n<m(−1)m−1(4m−1)(2m)2(2m−1)βm)=∑n=0∞2(2n+1)2∑k=02n(−1)k2k+1
21 ∑n=0∞(−1)n(4n+1)βn3(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑n<m(−1)m−1(4m−1)(2m)2(2m−1)βm∑k=0m−1(−1)k(4k+1)βk3)=π2∑n=0∞βn2n+1∑m=0nβm2
22 ∑n=0∞(−1)n(4n+1)βn3(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑n<m(−1)m−1(4m−1)(2m)3βm3∑k=0m−1(4k+1)βk4)=πln2
23 ∑n=0∞(−1)n(4n+1)βn3(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑n≤m(−1)mβm2m+1−∑n<m(−1)m−1βm2m)=π28
24 ∑n=1∞4n−1(2n)3(2n−1)βn2∑m=0n−1(−1)m(4m+1)βm3=2G
25 ∑n=0∞(4n+1)βn4(∑n<m(−1)m−1(4m−1)(2m)2(2m−1)βm)2=2πG−72ζ(3)
26 ∑n=1∞(−1)n−1(4n−1)(2n)2(2n−1)βn∑m=0n−1(4m+1)βm4=2Gπ
27 ∑n=1∞(−1)n−1(4n−1)(2n)2(2n−1)βn∑m=0n−1(−1)m(4m+1)βm5=4π∑n=0∞βn2(4n+1)2
28 ∑n=0∞(4n+1)βn4(72ζ(3)+∑m=1n4m−1(2m)4βm4)(∑n<m4m−1(2m)3(2m−1)βm2)=938ζ(5)
29 ∑n=0∞(−1)n(4n+1)βn3(∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑n<m4m−1(2m)3(2m−1)βm2∑k=0m−1(−1)k(4k+1)βk3)=π38
30 ∑n=0∞(−1)n(4n+1)βn5(π24+∑n<m(−1)m−1(4m−1)(2m)3βm3)(∑n<m(−1)m−1(4m−1)(2m)2(2m−1)βm)=Γ(14)432
31 ∑n=1∞((−1)n−1(4n−1)(2n)3βn3∑k=0n−1(−1)k(4k+1)βk3−1n)=2ln2
32 ∑n=1∞(−1)n−1(4n−1)(2n)2(2n−1)βn∑m=0n−1(−1)m(4m+1)βm3=π2
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。