Definition.
Cr=2−2r(2rr), Pr=(−1)r(π2)2r+1(2r+1)!, Qr=(−1)r(π2)2r(2r)!
ζn(k)=∑0<n1<⋯<nr≤nn−ktn(k)=∑0≤n1<⋯<nr≤n(2n+1)−kξn(k)=∑0<n1<⋯<nr≤n(2n)−kSnA(k)=∑0<n1<⋯<nr≤nCn1−1(2n)−kSnB(k)=∑0≤n1<⋯<nr≤nCn1(2n+1)−k
Theorem 1. m,n∈Z≥0に対して次の式が成り立つ。
[1.1.1] ∫0π2x2mcos2nxdx=(−1)m(2m)!Cn∑i=0mPm−iξn⋆({2}i)
[1.1.2] ∫0π2x2mcos2n+1xdx=(−1)m(2m)!(2n+1)Cn∑i=0mQm−itn⋆({2}i)
[1.1.3] ∫0π2x2m+1cos2nxdx=(−1)m+1(2m+1)!Cn(SnA⋆({2}m+1)+∑i=0mQm−i+1ξn⋆({2}i))
[1.1.4] ∫0π2x2m+1cos2n+1xdx=(−1)m(2m+1)!(2n+1)Cn(∑i=0mPm−itn⋆({2}i)−SnB⋆(1,{2}m))
[1.1.5] ∫0π2x2msin2nxdx=(−1)m(2m)!Cn(∑i=0mPm−iξn⋆({2}i)−∑i=1mPm−iSnA⋆({2}i))
[1.1.6] ∫0π2x2msin2n+1xdx=(−1)m(2m)!(2n+1)Cn(tn⋆({2}m)−∑i=0mPm−iSnB⋆(1,{2}i−1))
[1.1.7] ∫0π2x2m+1sin2nxdx=(−1)m(2m+1)!Cn(∑i=0mQm−iSnA⋆({2}i+1)−∑i=0mQm−i+1ξn⋆({2}i))
[1.1.8] ∫0π2x2m+1sin2n+1xdx=(−1)m(2m+1)!(2n+1)Cn∑i=0mQm−iSnB⋆(1,{2}i)
Proof. いずれも同じような部分積分をし,漸化式を解くことで容易に求まるので,[1.1.1]のみ証明を示す。
I(m,n)=∫0π2x2mcos2nxdx とおく。部分積分し整理すれば,
2nI(m,n)=−(2m−1)2m2nI(m−1,n)+(2n−1)I(m,n−1) を得る。両辺12nCnを掛けると
I(m,n)Cn=−(2m−1)2m(2n)2CnI(m−1,n)+I(m,n−1)Cn−1=−∑i=1n(2m−1)2m(2i)2CiI(m−1,i)+I(m,0)C0=−∑i=1n(2m−1)2m(2i)2CiI(m−1,i)+(π2)2m+12m+1 両辺1(2m)!を掛けると
I(m,n)(2m)!Cn=(π2)2m+1(2m+1)!−∑i=1n1(2i)2I(m−1,i)(2m−2)!Ci=(π2)2m+1(2m+1)!−∑i=1n1(2i)2((π2)2m−1(2m−1)!−∑j=1i1(2j)2I(m−2,j)(2m−4)!Cj)=⋯=(−1)m∑i=0mPm−iξn⋆({2}i)◻
Corollary 1.1.
[1.2.1] limn→∞∑i=0mPm−iξn⋆({2}i)=0 (m∈Z>0)
[1.2.2] limn→∞∑i=0mQm−itn⋆({2}i)=0 (m∈Z>0)
[1.2.3] limn→∞(SnA⋆({2}m+1)+∑i=0mQm−i+1ξn⋆({2}i))=0 (m∈Z≥0)
[1.2.4] limn→∞(∑i=0mPm−itn⋆({2}i)−SnB⋆(1,{2}m))=0 (m∈Z≥0)
Proof.
limn→∞1Cn∫0π2xmcos2nxdx=0, limn→∞(2n+1)Cn∫0π2xmcos2n+1xdx=0 より明らか。◻
Corollary 1.2.
[1.3.1] ∑i=0mPm−i∑0<nξn⋆({2}i)ξn−1({2}a−1)(2n)2=(−1)m(π2)2a+2m+1(2a+2m+1)!
[1.3.2] ∑i=0mQm−i∑0≤ntn⋆({2}i)tn−1({2}a−1)(2n+1)2=(−1)m(π2)2a+2m(2a+2m)!
[1.3.3] ∑0<nξn−1({2}a−1)(2n)2(SnA⋆({2}m+1)+∑i=0mQm−i+1ξn⋆({2}i))=(−1)m+1(π2)2a+2m+2(2a+2m+2)!
[1.3.4] ∑0≤ntn−1({2}a−1)(2n+1)2(∑i=0mPm−itn⋆({2}i)−SnB⋆(1,{2}m))=(−1)m(π2)2a+2m+1(2a+2m+1)!
[1.3.5] ∑0<nξn−1({2}a−1)(2n)2(∑i=0mPm−iξn⋆({2}i)−∑i=1mPm−iSnA⋆({2}i))=(−1)m(π2)2a+2m+1(2a+2m+1)(2a)!(2m)!
[1.3.6] ∑0≤ntn−1({2}a−1)(2n+1)2(tn⋆({2}m)−∑i=0mPm−iSnB⋆(1,{2}i−1))=(−1)m(π2)2a+2m(2a+2m)(2a−1)!(2m)!
[1.3.7] ∑0<nξn−1({2}a−1)(2n)2(∑i=0mQm−iSnA⋆({2}i+1)−∑i=0mQm−i+1ξn⋆({2}i))=(−1)m(π2)2a+2m+2(2a+2m+2)(2a)!(2m+1)!
[1.3.8] ∑i=0mQm−i∑0≤ntn−1({2}a−1)(2n+1)2SnB⋆(1,{2}i)=(−1)m(π2)2a+2m+1(2a+2m+1)(2a−1)!(2m+1)!
∑0<nξn−1({2}a−1)(2n)2Cnsin2nx=x2a(2a)!, ∑0≤nCntn−1({2}a−1)2n+1sin2n+1x=x2a−1(2a−1)! より明らか。◻
Corollary 1.3.
[1.4.1] ∑i=0mPm−i∑0<nCn2ξn⋆({2}i)2n=(−1)m(2m)!∫0π2x2mln21+sinxdx
[1.4.1] ∑i=0mQm−i∑0≤ntn⋆({2}i)(2n+1)2Cn2=(−1)m(2m)!∫0π2x2m(π2−x)sinxdx
∑0<nCn2nxn=ln21+1−x, ∑0≤nx2n+1(2n+1)Cn=sin−1x1−x2 より明らか。◻ Remarks. 複素解析などにより,Corollary 1.3の右辺の積分は計算できるが,ここでは省く。 いずれにしても,都合がいいMaclaurin expansionを適応することで,積分を計算できるものにした。 著者はTheorem 1をもとに様々な結果を得た。導出過程は省くが,結果だけいくつか列挙する。
Corollary 1.4. Er : Euler number
[1.5.1] ∑0≤hξn⋆({2}h)=1(2n+1)Cn2
[1.5.2] ∑0<hSnA⋆({2}h)=1(2n+1)Cn(1Cn−1)
[1.5.3] ∑0<nCnζn⋆({2}a−1)n2=−4ζ⋆(2a−1,1―)−2ζ(2a)
[1.5.4] ∑0≤nSnB⋆(1,{2}a−1)(2n+1)2Cn=2t(2a+1)
[1.5.5] ∑0≤ntn⋆({2}a−1)(2n+1)3Cn2=4at(2a+1)−π∑i=0a−1E2iQiβ(2a−2i)
[1.5.6] ∑0≤nE2aQa−tn⋆({2}a)(2n+1)2Cn2=2(2a+1)β(2a+2)−2E2aQa−π∑i=0a−1E2iQit(2a−2i+1)
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。
現在のページ