${\rm\mathbf{Definition.}}$
$ \D C_r=2^{-2r}\binom{2r}{r}, P_r=\frac{(-1)^r(\frac{\pi}{2})^{2r+1}}{(2r+1)!}, Q_r=\frac{(-1)^r(\frac{\pi}{2})^{2r}}{(2r)!} $
$\BA \D &{\zeta}_n(\k)=\sum_{0< n_1<\cdots< n_r\le n}{\n}^{-\k}\\ &{t}^{}_n(\k)=\sum_{0\le n_1<\cdots< n_r\le n}\left(2\n+1\right)^{-\k}\\ &{\xi}_n(\k)=\sum_{0< n_1<\cdots< n_r\le n}{(2\bl{n})}^{-\k}\\ &S_n^{A}(\k)=\sum_{0< n_1<\cdots< n_r\le n} C_{n_1}^{-1} {(2\n)}^{-\k}\\ &S_n^{B}(\k)=\sum_{0\le n_1<\cdots< n_r\le n}C_{n_1}\left(2\n+1\right)^{-\k} \EA$
${\rm\mathbf{Theorem~1.}}$ $m,n\in\mathbb{Z}_{\ge 0} $に対して次の式が成り立つ。
$ \D[1.1.1] \int_0^\frac{\pi}{2} x^{2m}\cos^{2n}x\,dx =(-1)^m(2m)!C_n\sum_{i=0}^m P_{m-i}{\xi}^{\star}_n(\{2\}_{i}) $
$ \D[1.1.2] \int_0^\frac{\pi}{2} x^{2m}\cos^{2n+1}x\,dx =\frac{(-1)^m(2m)!}{(2n+1)C_n}\sum_{i=0}^m Q_{m-i} {t}^{\star}_n(\{2\}_i) $
$ \D[1.1.3] \int_0^\frac{\pi}{2} x^{2m+1}\cos^{2n}x\,dx =(-1)^{m+1}(2m+1)!C_n\left({S}^{A\star}_n(\{2\}_{m+1}) +\sum_{i=0}^m Q_{m-i+1}{\xi}^{\star}_n(\{2\}_i)\right) $
$ \D[1.1.4] \int_0^\frac{\pi}{2} x^{2m+1}\cos^{2n+1}x\,dx =\frac{(-1)^{m}(2m+1)!}{(2n+1)C_n}\left(\sum_{i=0}^mP_{m-i}{t}^{\star}_n(\{2\}_i) -{S}^{B\star}_n(1,\{2\}_m)\right) $
$ \D[1.1.5] \int_0^\frac{\pi}{2} x^{2m}\sin^{2n}x\,dx =(-1)^m(2m)!C_n\left(\sum_{i=0}^mP_{m-i}{\xi}^{\star}_n(\{2\}_i) -\sum_{i=1}^mP_{m-i}{S}^{A\star}_n(\{2\}_i)\right) $
$ \D[1.1.6] \int_0^\frac{\pi}{2} x^{2m}\sin^{2n+1}x\,dx =\frac{(-1)^m(2m)!}{(2n+1)C_n}\left({t}^{\star}_n(\{2\}_m) -\sum_{i=0}^mP_{m-i}{S}^{B\star}_n(1,\{2\}_{i-1})\right) $
$ \D[1.1.7] \int_0^\frac{\pi}{2} x^{2m+1}\sin^{2n}x\,dx =(-1)^m(2m+1)!C_n\left(\sum_{i=0}^mQ_{m-i}{S}^{A\star}_n(\{2\}_{i+1}) -\sum_{i=0}^m Q_{m-i+1}{\xi}^{\star}_n(\{2\}_i) \right) $
$ \D[1.1.8] \int_0^\frac{\pi}{2} x^{2m+1}\sin^{2n+1}x\,dx =\frac{(-1)^m(2m+1)!}{(2n+1)C_n}\sum_{i=0}^mQ_{m-i}{S}^{B\star}_n(1,\{2\}_i) $
${\rm\mathbf{Proof.}}$
いずれも同じような部分積分をし,漸化式を解くことで容易に求まるので,$[1.1.1]$のみ証明を示す。
$
\D I(m,n)=\int_0^\frac{\pi}{2} x^{2m}\cos^{2n}x\,dx
$
とおく。部分積分し整理すれば,
$
\D 2nI(m,n)=-\frac{(2m-1)2m}{2n}I(m-1,n)+(2n-1)I(m,n-1)
$
を得る。両辺$\cfrac{1}{2nC_n}$を掛けると
$\BA
\D \frac{I(m,n)}{C_n}
&=-\frac{(2m-1)2m}{(2n)^2C_n}I(m-1,n)+\frac{I(m,n-1)}{C_{n-1}}\\
&=-\sum_{i=1}^{n}\frac{(2m-1)2m}{(2i)^2C_i}I(m-1,i)+\frac{I(m,0)}{C_0}\\
&=-\sum_{i=1}^{n}\frac{(2m-1)2m}{(2i)^2C_i}I(m-1,i)+\frac{\L(\frac{\pi}{2}\R)^{2m+1}}{2m+1}
\EA$
両辺$\cfrac{1}{(2m)!}$を掛けると
$\BA
\D \frac{I(m,n)}{(2m)!C_n}
&=\frac{\L(\frac{\pi}{2}\R)^{2m+1}}{(2m+1)!}-\sum_{i=1}^n\frac{1}{(2i)^2}\frac{I(m-1,i)}{(2m-2)!C_i}\\
&=\frac{\L(\frac{\pi}{2}\R)^{2m+1}}{(2m+1)!}-\sum_{i=1}^n\frac{1}{(2i)^2}\L(\frac{\L(\frac{\pi}{2}\R)^{2m-1}}{(2m-1)!}-\sum_{j=1}^i\frac{1}{(2j)^2}\frac{I(m-2,j)}{(2m-4)!C_j} \R) \\
&=\cdots\\
&=(-1)^m\sum_{i=0}^m P_{m-i}{\xi}^{\star}_n(\{2\}_{i})
\EA$
$\qed$
${\rm\mathbf{Corollary~1.1.}}$
$ \D[1.2.1] \lim_{n\to\infty}\sum_{i=0}^{m}P_{m-i}{\xi}^{\star}_n(\{2\}_i)=0 (m\in\mathbb{Z}_{>0}) $
$ \D[1.2.2] \lim_{n\to\infty}\sum_{i=0}^mQ_{m-i}{t}^{\star}_n(\{2\}_i)=0 (m\in\mathbb{Z}_{>0}) $
$ \D[1.2.3] \lim_{n\to\infty}\L({S}^{A\star}_n(\{2\}_{m+1})+\sum_{i=0}^mQ_{m-i+1}{\xi}^{\star}_n(\{2\}_i)\R)=0 (m\in\mathbb{Z}_{\ge0}) $
$ \D[1.2.4] \lim_{n\to\infty}\left(\sum_{i=0}^mP_{m-i}{t}^{\star}_n(\{2\}_i) -{S}^{B\star}_n(1,\{2\}_m)\right)=0 (m\in\mathbb{Z}_{\ge0}) $
${\rm\mathbf{Proof.}}$
$
\D \lim_{n\to\infty}\frac{1}{C_n}\int_0^\frac{\pi}{2}x^m\cos^{2n}x\,dx=0,
\lim_{n\to\infty}(2n+1)C_n\int_0^\frac{\pi}{2}x^m\cos^{2n+1}x\,dx=0
$
より明らか。
$\qed$
${\rm\mathbf{Corollary~1.2.}}$
$ \D[1.3.1] \sum_{i=0}^mP_{m-i}\sum_{0< n}\frac{{\xi}^{\star}_n(\{2\}_i){\xi}_{n-1}(\{2\}_{a-1})}{(2n)^2} =\frac{(-1)^m\L(\frac{\pi}{2}\R)^{2a+2m+1}}{(2a+2m+1)!} $
$ \D[1.3.2] \sum_{i=0}^mQ_{m-i}\sum_{0\le n}\frac{{t}^{\star}_n(\{2\}_{i}){t}_{n-1}(\{2\}_{a-1})}{(2n+1)^2} =\frac{(-1)^m\L(\frac{\pi}{2}\R)^{2a+2m}}{(2a+2m)!} $
$ \D[1.3.3] \sum_{0< n}\frac{{\xi}_{n-1}(\{2\}_{a-1})}{(2n)^2}\left({S}^{A\star}_n(\{2\}_{m+1}) +\sum_{i=0}^m Q_{m-i+1}{\xi}^{\star}_n(\{2\}_i)\right) =\frac{(-1)^{m+1}\L(\frac{\pi}{2}\R)^{2a+2m+2}}{(2a+2m+2)!} $
$ \D[1.3.4] \sum_{0\le n}\frac{t_{n-1}(\{2\}_{a-1})}{(2n+1)^2}\left(\sum_{i=0}^mP_{m-i}{t}^{\star}_n(\{2\}_i) -{S}^{B\star}_n(1,\{2\}_m)\right) =\frac{(-1)^m\L(\frac{\pi}{2}\R)^{2a+2m+1}}{(2a+2m+1)!} $
$ \D[1.3.5] \sum_{0< n}\frac{{\xi}_{n-1}(\{2\}_{a-1})}{(2n)^2}\left(\sum_{i=0}^mP_{m-i}{\xi}^{\star}_n(\{2\}_i) -\sum_{i=1}^mP_{m-i}{S}^{A\star}_n(\{2\}_i)\right) =\frac{(-1)^m\L(\frac{\pi}{2}\R)^{2a+2m+1}}{(2a+2m+1)(2a)!(2m)!} $
$ \D[1.3.6] \sum_{0\le n}\frac{t_{n-1}(\{2\}_{a-1})}{(2n+1)^2}\left({t}^{\star}_n(\{2\}_m) -\sum_{i=0}^mP_{m-i}{S}^{B\star}_n(1,\{2\}_{i-1})\right) =\frac{(-1)^m\L(\frac{\pi}{2}\R)^{2a+2m}}{(2a+2m)(2a-1)!(2m)!} $
$ \D[1.3.7] \sum_{0< n}\frac{{\xi}_{n-1}(\{2\}_{a-1})}{(2n)^2}\left(\sum_{i=0}^mQ_{m-i}{S}^{A\star}_n(\{2\}_{i+1}) -\sum_{i=0}^m Q_{m-i+1}{\xi}^{\star}_n(\{2\}_i) \right) =\frac{(-1)^m\L(\frac{\pi}{2}\R)^{2a+2m+2}}{(2a+2m+2)(2a)!(2m+1)!} $
$ \D[1.3.8] \sum_{i=0}^mQ_{m-i}\sum_{0\le n}\frac{t_{n-1}(\{2\}_{a-1})}{(2n+1)^2}{S}^{B\star}_n(1,\{2\}_i) =\frac{(-1)^m\L(\frac{\pi}{2}\R)^{2a+2m+1}}{(2a+2m+1)(2a-1)!(2m+1)!} $
${\rm\mathbf{Proof.}}$
$
\D \sum_{0< n}\frac{{\xi}_{n-1}(\{2\}_{a-1})}{(2n)^2C_n}\,\sin^{2n}x=\frac{x^{2a}}{(2a)!},
\sum_{0\le n}\frac{C_n t_{n-1}(\{2\}_{a-1})}{2n+1}\,\sin^{2n+1}x=\frac{x^{2a-1}}{(2a-1)!}
$
より明らか。
$\qed$
${\rm\mathbf{Corollary~1.3.}}$
$ \D[1.4.1] \sum_{i=0}^mP_{m-i}\sum_{0< n}\frac{C_n^2{\xi}^{\star}_n(\{2\}_i)}{2n} =\frac{(-1)^m}{(2m)!}\int_0^\frac{\pi}{2}x^{2m}\ln\frac{2}{1+\sin x}\,dx $
$ \D[1.4.1] \sum_{i=0}^mQ_{m-i}\sum_{0\le n}\frac{{t}^{\star}_n(\{2\}_i)}{(2n+1)^2C_n^2} =\frac{(-1)^m}{(2m)!}\int_0^\frac{\pi}{2}\frac{x^{2m}\L(\frac{\pi}{2}-x\R)}{\sin x}\,dx $
${\rm\mathbf{Proof.}}$
$
\D \sum_{0< n}\frac{C_n}{2n}x^n=\ln\frac{2}{1+\sqrt{1-x}}, \sum_{0\le n}\frac{x^{2n+1}}{(2n+1)C_n}=\frac{\sin^{-1}x}{\sqrt{1-x^2}}
$
より明らか。
$\qed$
${\rm\mathbf{Remarks.}}$
複素解析などにより,${\rm\mathbf{Corollary~1.3}}$の右辺の積分は計算できるが,ここでは省く。
いずれにしても,都合がいい${\rm Maclaurin~expansion}$を適応することで,積分を計算できるものにした。
著者は${\rm\mathbf{Theorem~1}}$をもとに様々な結果を得た。導出過程は省くが,結果だけいくつか列挙する。
${\rm\mathbf{Corollary~1.4.}}$ $E_r~:~{\rm Euler~number}$
$ \D[1.5.1] \sum_{0\le h}{\xi}^{\star}_n(\{2\}_h)=\frac{1}{(2n+1)C_n^2} $
$ \D[1.5.2] \sum_{0< h}{S}^{A\star}_n(\{2\}_h)=\frac{1}{(2n+1)C_n}\L(\frac{1}{C_n}-1\R) $
$ \D[1.5.3] \sum_{0< n}\frac{C_n{\zeta}^{\star}_n(\{2\}_{a-1})}{n^2} =-4\zeta^{\star}(2a-1,\overline{1})-2\zeta(2a) $
$ \D[1.5.4] \sum_{0\le n}\frac{{S}^{B\star}_n(1,\{2\}_{a-1})}{(2n+1)^2C_n}=2t(2a+1) $
$ \D[1.5.5] \sum_{0\le n}\frac{{t}^{\star}_n(\{2\}_{a-1})}{(2n+1)^3C_n^2} =4at(2a+1)-\pi\sum_{i=0}^{a-1}E_{2i}Q_{i}\beta(2a-2i) $
$ \D[1.5.6] \sum_{0\le n}\frac{E_{2a}Q_a-{t}^{\star}_n(\{2\}_a)}{(2n+1)^2C_n^2} =2(2a+1)\beta(2a+2)-2E_{2a}Q_a-\pi\sum_{i=0}^{a-1}E_{2i}Q_it(2a-2i+1) $