Proposition 6.1.
[6.1] ∑0<m≤nCnCmm2n2=π2ln22−∑0<m≤n1mn3Cn
Proof. ∑0<m≤nCnCmm2n2=∑0<nCnn2(−π22+4Cn∫0π2tsin2ntdt)=−π22∑0<nCnn2+∑0<n4n2∫0π2tsin2ntdt=−π22∑0<nCnn2+∑0<n4n2([t22sin2nt]0π2−n∫0π2t2sin2n−1tcostdt)=−π22∑0<nCnn2+∑0<n4n2(π2)22−∑0<n4n∫0π2t2sin2n−1tcostdt=−π22∑0<nCnn2+π412−∑0<n4n∫01t2n−1(sin−1t)2dt=−π22∑0<nCnn2+π412−∑0<n2n∫01t2n−1∑0<mt2mm2Cmdt=−π22∑0<nCnn2+π412−∑0<m,n2nm2Cm∫01t2m+2n−1dt=−π22∑0<nCnn2+π412−∑0<m,n1nm2(m+n)Cm=−π22(π26−2ln22)+π412−∑0<m,n1m3Cm(1n−1m+n)=π2ln22−∑0<m≤n1mn3Cn◻
Proposition 6.2.
[6.2] ∑0<m≤nCnxnm2n2Cm=π22Li2(x)−π22∑0<nCnxnn2−∑0<m,nxnm2n(m+n)Cm
Proof. ∑0<m≤nCnxnm2n2Cm=∑0<nCnxnn2(−π22+4Cn∫0π2tsin2ntdt)=−π22∑0<nCnxnn2+∑0<n4xnn2([t22sin2nt]0π2−n∫0π2t2sin2n−1tcostdt)=π22Li2(x)−π22∑0<nCnxnn2−∑0<n4xnn∫01t2n−1(sin−1t)2dt=π22Li2(x)−π22∑0<nCnxnn2−∑0<n2xnn∫01t2n−1∑0<mt2mm2Cmdt=π22Li2(x)−π22∑0<nCnxnn2−∑0<n2xnm2nCm∫01t2m+2n−1dt=π22Li2(x)−π22∑0<nCnxnn2−∑0<m,nxnm2n(m+n)Cm◻
Proposition 6.3.
[6.3] π∑0≤nCn2xn=1−x∑0≤m<nCm2nCnxn−m−1
Proof. π∑0≤nCn2xn=2∫0π2dθ1−xsin2θ=2∫01dt(1−xt2)(1−t2)=∫01dt(1−xt)(1−t)t=1x∫0xdt(1−t)(1−tx)t=1x∑0≤mCmxm∫01tm−121−tdt=1x∑0≤mCmxmCm∑m<nxn−121−xnCn=1−x∑0≤m<nCm2nCnxn−m−1◻
Lemma 6.1.
[6.4] ∫0∞xcosh2nxdx=ln22nCn+12∑k=0n−1(−1)kHk2k+1(n−1k)
Proof. ∫0zxcosh2nxdx=[x∑k=0n−1(−1)k2k+1(n−1k)tanh2k+1x]0z−∫0z∑k=0n−1(−1)k2k+1(n−1k)tanh2k+1xdx=z∑k=0n−1(−1)k2k+1(n−1k)tanh2k+1z−∑k=0n−1(−1)k2k+1(n−1k)[lncoshx−∑l=1ktanh2lx2l]0z=∑k=0n−1(−1)k2k+1(n−1k)(ztanh2k+1z−lncoshz+∑l=1ktanh2lz2l)いま limz→∞(ztanh2k+1z−lncoshz)=ln2ので ∫0∞xcosh2nxdx=ln22nCn+12∑k=0n−1(−1)kHk2k+1(n−1k)◻
Proposition 6.4. −π2≤x≤π2に対して
[6.5] 2x2ln2+∑0<k≤m<n(−1)msin2nxk(2m+1)n(n−1m)=∑0<n(−1)n−1n3(1−cos2nx)
Proof. ∫0∞tln11−sin2xcosh2tdt=∑0<nsin2nxn∫0∞tcosh2ntdt=∑0<nsin2nxn(ln22nCn+12∑0<k≤m<n(−1)m−1k(2m+1)(n−1m))=x2ln2+12∑0<k≤m<n(−1)msin2nxk(2m+1)n(n−1m)
∫0∞tln11−sin2xcosh2tdt=∫0∞tln(1+e−2t)21+2e−2tsin2x+e−4tdt=∫0∞t⋅2∑0<n(−1)n−1e−2ntn(1−cos2nx)dt=∑0<n(−1)n−12n3(1−cos2nx)◻
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。
現在のページ