1
大学数学基礎解説
文献あり

Fibonacci trace formula

27
0

Here's an observation I posted on Twitter together with a proof .
The Twitter version has some errors which I have fixed, but further corrections are welcome!

Fibonacci trace formula

Let M be an integer k×k matrix with distinct eigenvalues a1,,ak, and characteristic polynomial P(x)=(xa1)(xak)=xki=0k1bixi.
Then the equation fn:=trace(MnP(M)1)(n=0,1,2,) defines a sequence of integers.

You can recover the Multinacci numbers (k−ナッチ数) by plugging in a companion matrix for M.

For instance if you choose M=(0111), then
P(x)=x2x1=(x1+52)(x152) and P(M)=2MI=(1221).
The fn turn out to be the Fibonacci numbers, but P(M)1=15(1221) is not an integer matrix.
It is not obvious why the trace should be an integer in general.

The first k values are f0==fk2=0 and fk1=1.

The proof idea is thanks to @apu_yokai, who linked to his older article about partial fraction decomposition.

As M has k distinct eigenvalues a1,...,ak we can act (for the purpose of computing the trace) as if M were diagonal:
fn=i=1kainP(ai)(n=0,1,2,)

By partial fraction decomposition we get f0:

i=1kxxai1P(ai)=x(xa1)(xak)=xP(x)

Take the limit x:

f0=i=1k1P(ai)={0 for 1<k1 for 1=k

f1,...,fk1 we get inductively.
n1n, while n<k:

(xn1f0+xn2f1+...+xfn2+fn1)x=0+i=1kainxxai1P(ai)

=i=1k((xn1+xn2ai+...+xain2+ain1)x+ainxxai)1P(ai)

=i=1k(xnain)x+ainxxai1ji(aiaj)=xn+1P(x)

Therefore

fn=limxi=1kainxxai1P(ai)=limxxn+1P(x)={0 if n<k11 if n=k1

The sequence (fn)n0 satisfies the recursion scheme fn+k=i=0k1bifn+i for all n0.

This is due to Cayley-Hamilton and linearity of the trace

MnP(M)P(M)1=0Mn+kP(M)1=i=0k1biMn+iP(M)1trace(Mn+kP(M)1)=i=0k1bitrace(Mn+iP(M)1)fn+k=i=0k1bifn+i

Because the initial values are integers and above recursion scheme has integer coefficients all fn are integers.

Fibonacci trace formula

The condition that M has distinct eigenvalues means that gcd(P,P)=1, so P(M) is invertible, and the sequence is well-defined.
Via Lemma 2 the sequence satisfies a recursion scheme with integral coefficients bi, and the initial values are also integral by Lemma 1. Therefore all fn are integral by induction.

参考文献

投稿日:2021129
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

私のことは気にしないでください。🙇‍♂️

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中