$$\newcommand{C}[0]{\mathbb{C}}
\newcommand{div}[0]{\mathrm{div}}
\newcommand{division}[0]{÷}
\newcommand{grad}[0]{\mathrm{grad}\ }
\newcommand{N}[0]{\mathbb{N}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{rot}[0]{\mathrm{rot}\ }
\newcommand{Z}[0]{\mathbb{Z}}
$$
@sounansya_
さんがツイートした
こちらの定理
の解説です.
以下の等式が成り立ちます.ただし$a\in\C$とし,$\mathfrak{R}a>1$を満たすとします.
$\displaystyle\sum_{n,m=0}^\infty\frac{1}{\left(n+m+1\right)^{a+1}}=\zeta\left(a\right)$
解説
\begin{align*}
&\lim_{N\rightarrow\infty}\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m\land n+m\leq N}\left|\frac{1}{\left(n+m+1\right)^{a+1}}\right|\\
=&\lim_{N\rightarrow\infty}\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m\land n+m\leq N}\frac{1}{\left(n+m+1\right)^{\mathfrak{R}a+1}}\\
=&\lim_{N\rightarrow\infty}\sum_{\left(n,k-n\right)\in\Z^2\land0\leq n\land0\leq k-n\land k\leq N}\frac{1}{\left(k+1\right)^{\mathfrak{R}a+1}}\\
=&\lim_{N\rightarrow\infty}\sum_{\left(n,k\right)\in\Z^2\land 0\leq n\leq k\leq N}\frac{1}{\left(k+1\right)^{\mathfrak{R}a+1}}\\
=&\lim_{N\rightarrow\infty}\sum_{k=0}^N\sum_{n=0}^k\frac{1}{\left(k+1\right)^{\mathfrak{R}a+1}}\\
=&\sum_{k=0}^\infty\frac{k+1}{\left(k+1\right)^{\mathfrak{R}a+1}}\\
=&\sum_{k=1}^\infty\frac{1}{k^{\mathfrak{R}a}}\\
=&\zeta\left(\mathfrak{R}a\right)\\
<&\infty
\end{align*}
より$\displaystyle\lim_{N\rightarrow\infty}\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m\land n+m\leq N}\left|\frac{1}{\left(n+m+1\right)^{a+1}}\right|$は存在します.
従って正項二重級数の性質から$\displaystyle\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m}\left|\frac{1}{\left(n+m+1\right)^{a+1}}\right|$は存在し,さらに絶対収束性の性質から$\displaystyle\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m}\frac{1}{\left(n+m+1\right)^{a+1}}=\lim_{N\rightarrow\infty}\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m\land n+m\leq N}\frac{1}{\left(n+m+1\right)^{a+1}}$です.
これより
\begin{align*}
&\sum_{n,m=0}^\infty\frac{1}{\left(n+m+1\right)^{a+1}}\\
=&\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m}\frac{1}{\left(n+m+1\right)^{a+1}}\\
=&\lim_{N\rightarrow\infty}\sum_{\left(n,m\right)\in\Z^2\land0\leq n\land0\leq m\land n+m\leq N}\frac{1}{\left(n+m+1\right)^{a+1}}\\
=&\lim_{N\rightarrow\infty}\sum_{\left(n,k-n\right)\in\Z^2\land0\leq n\land0\leq k-n\land k\leq N}\frac{1}{\left(k+1\right)^{a+1}}\\
=&\lim_{N\rightarrow\infty}\sum_{\left(n,k\right)\in\Z^2\land 0\leq n\leq k\leq N}\frac{1}{\left(k+1\right)^{a+1}}\\
=&\lim_{N\rightarrow\infty}\sum_{k=0}^N\sum_{n=0}^k\frac{1}{\left(k+1\right)^{a+1}}\\
=&\sum_{k=0}^\infty\frac{k+1}{\left(k+1\right)^{a+1}}\\
=&\sum_{k=1}^\infty\frac{1}{k^a}\\
=&\zeta\left(a\right)
\end{align*}
なので,$\displaystyle\sum_{n,m=0}^\infty\frac{1}{\left(n+m+1\right)^{a+1}}=\zeta\left(a\right)$です.$\blacksquare$