この記事では双曲線余接関数
まず
が成り立つ。
ちなみに
つまりこれも"初等的に"証明できるわけです。
そもそも因数分解公式や部分分数展開というのは複素解析の手法を使えば
アダマールの因数分解定理の記事
や
ミッタク=レフラーの部分分数展開定理の記事
で紹介したように容易に示すことができるのです。そこをあえて初等的に示すというのですからその"初等的"の程度としては高校数学(数Ⅲまで)の範囲内の知識を想定することになります。つまり複素解析は使わなければ、
そんな初等的な導出を以下で示していきます。
私が初等的証明を発見したのは、複素解析、ひいてはリーマンゼータ関数の勉強(独学)をしていたときどうしても三角関数の因数分解公式の納得のいく証明が見つからなくてあちこちのサイトを漁っていた時のことでした。というのもWikipediaではなんかやたらややこしいことをしているし、ワイエルシュトラスの因数分解定理では不十分だし、ミッタク=レフラーの定理でも不十分だし、初等的証明の数々もヒューリスティックであったり極限の取り方に厳密性が無かったり(後述)となかなか難儀していました。
そんなときようやくあるサイト(URL紛失)に行きつき、それなりに納得のいく手法を得ることができました。
であったことを思い出すと
が部分分数分解できればいい感じになることが予想されます。
そこでまず
と因数分解できる。
方程式
の
と因数分解できることがわかる。
と部分分数分解できる。
つまり
が成り立つので、これを対数微分すると
となり、これを
ちなみに
より
が成り立ちます。
補題3において
を得る。この
がわかるが...
ここで
だから
でいいじゃないか、と言いたいところだがこれだと厳密性に欠けてしまう。
というのも
とおくと上の操作は
のように総和
どうしてこのような操作を気軽に行ってはいけないのかというと例えば
という例があるように一つ一つの項はある値に近づくように見えても足し合わせてみると全く違う挙動を示すことがあるからだ(ほかにもいい例があるかもしれないが私にはこれくらいしか思いつかなかった)。
余談1で言及したあるサイトというのも含め、初等的証明と銘打たれた記事のことごとくが当然のようにこの操作を行っていてルベーグ積分という武器を手に入れるまでずっともやもやしていた。
これの一つの解決策として先にも言ったようにルベーグ積分の手法がある。今回有効なのは単調収束定理だろう。
数列
を満たすとき
が成り立つ。
これを使えば
が
を得ることができる。
ただし最初に言った通りこの記事ではルベーグ積分を使わずに
を示すのであった。
ところで複素解析やルベーグ積分という道具があるのにもかかわらずなんでわざわざ初等的証明なんかを考えたのかというと、ある日 高校数学の美しい物語 のTwitterを眺めててこんなツイートを目にしたのがきっかけでした。
美しい無限級数。
— 高校数学の美しい物語の管理人 (@mathelegant) May 2, 2019
[募集]高校数学の範囲での証明 pic.twitter.com/nm2ybLmZm4
画像で示された式は
見ての通り
三か月間誰も真に初等的で厳密な証明を与えてなかったようだったのでこれは!と思い、総和と極限の交換の部分をどうしようか色々考え始めたわけです。先のツイートに子葉の名でぶら下がっているように単調収束定理の証明をそのまま流用した手法で示したり、やたらややこしい関数の増減や不等式を示す方法を取ったりした結果、最終的に以下の形に落ち着きました。
ちなみに因数分解から極限を飛ばすというアイデアは余談1で述べたあるサイトのものですが総和と極限の交換についての議論はすべて自力で考えたものになります。
最終的に示したい等式は
である。もちろん
なのでこれが
そして実際以下の不等式を示すことができる。
実数
が成り立つ。
これを示すために色々と補題を示していく。以下
より
が成り立つので
つまり
を得る。
補題6より
つまり
がわかるので、これを整理することで主張を得る。
より
が成り立つので
つまり
を得る。
よって補題6と合わせて
がわかるので挟み撃ちの原理より主張を得る。
補題7より
が成り立つので補題8から
を得る。
については
を得る。
いま命題5から
が成り立っており、
をわかる。よって
を得る。
途中で
という式を紹介したが、これも
となり、これの
を得る。
ここで
とおくと
なので命題5より
が成り立ち、平均値の定理より
つまり
よって
を得る。
やっていることとしては総乗
本来(?)なら大学で学ぶ数学の知識で示す公式を高校数学の範囲で(しかも自力で)証明できたということでこれがなかなかのお気に入りで、その調子で入試の問題調にしてTwitterにあげてみたところ少し伸びたことがあった。
数学 問題#東京工業大学模試研究会 pic.twitter.com/EYql5YT9Ts
— 【非公認】東京工業大学模試研究会 (@tokyotech_ss_me) April 30, 2020
もっとも会話形式にアレンジしてくださったのは私とは別の方ではありますが。