$$\newcommand{a}[1]{\left\langle#1\right\rangle}
\newcommand{arccot}[0]{\mathrm{arccot}}
\newcommand{arccsc}[0]{\mathrm{arccsc}}
\newcommand{arcosh}[0]{\mathrm{arcosh}}
\newcommand{arcoth}[0]{\mathrm{arcoth}}
\newcommand{arcsch}[0]{\mathrm{arcsch}}
\newcommand{arcsec}[0]{\mathrm{arcsec}}
\newcommand{arsech}[0]{\mathrm{arsech}}
\newcommand{arsinh}[0]{\mathrm{arsinh}}
\newcommand{artanh}[0]{\mathrm{artanh}}
\newcommand{c}[1]{\left\{#1\right\}}
\newcommand{C}[0]{\mathbb{C}}
\newcommand{ce}[1]{\left\lceil#1\right\rceil}
\newcommand{class}[3]{C^{#1}\r{#2;#3}}
\newcommand{csch}[0]{\mathrm{csch}}
\newcommand{d}[0]{\displaystyle}
\newcommand{D}[0]{\mathbb{D}}
\newcommand{dd}[0]{\mathrm{d}}
\newcommand{div}[0]{\mathrm{div}}
\newcommand{division}[0]{÷}
\newcommand{dv}[1]{\frac{\dd}{\dd#1}}
\newcommand{eq}[2]{\exists#1\ \mathrm{s.t.}\ #2}
\newcommand{f}[1]{\left\lfloor#1\right\rfloor}
\newcommand{grad}[0]{\mathrm{grad}\ }
\newcommand{half}[0]{\frac{1}{2}}
\newcommand{halfpi}[0]{\frac{\pi}{2}}
\newcommand{i}[4]{\int_{#2}^{#3}#4\mathrm{d}#1}
\newcommand{l}[3]{\lim_{#1\rightarrow#2}#3}
\newcommand{map}[2]{\mathrm{Map}\r{#1,#2}}
\newcommand{N}[0]{\mathbb{N}}
\newcommand{p}[4]{\prod_{#1=#2}^{#3}#4}
\newcommand{pdv}[1]{\frac{\partial}{\partial#1}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{r}[1]{\left(#1\right)}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{rot}[0]{\mathrm{rot}\ }
\newcommand{s}[1]{\left[#1\right]}
\newcommand{sdif}[2]{#1\backslash#2}
\newcommand{sech}[0]{\mathrm{sech}}
\newcommand{set}[2]{\c{#1:#2}}
\newcommand{sll}[2]{\left[#1,#2\right[}
\newcommand{slr}[2]{\left[#1,#2\right]}
\newcommand{srl}[2]{\left]#1,#2\right[}
\newcommand{srr}[2]{\left]#1,#2\right]}
\newcommand{su}[4]{\sum_{#1=#2}^{#3}#4}
\newcommand{uq}[2]{\forall#1,\ #2}
\newcommand{v}[1]{\left|#1\right|}
\newcommand{Z}[0]{\mathbb{Z}}
$$
@integralsbot
さんがツイートした
こちらの定理
の解説です.
以下の等式が成り立ちます.
$\d\i{x}{0}{\infty}{\frac{\ln x}{\cosh^2x}}=\ln\frac{\pi}{4}-\gamma$
解説
\begin{align*}
&\i{x}{0}{\infty}{\frac{\ln x}{\cosh^2x}}\\
=&\lim_{s\searrow1}\pdv{s}\i{x}{0}{\infty}{\frac{x^{s-1}}{\cosh^2x}}\\
=&\lim_{s\searrow1}\pdv{s}\frac{2}{2^{s-1}}\i{x}{0}{\infty}{\frac{\r{2x}^{s-1}e^{-2x}}{\r{1+e^{-2x}}^2}2}\\
=&\lim_{s\searrow1}\pdv{s}\frac{1}{2^{s-2}}\i{t}{0}{\infty}{\frac{t^{s-1}e^{-t}}{\r{1+e^{-t}}^2}}\\
=&\lim_{s\searrow1}\pdv{s}\frac{1}{2^{s-2}}\i{t}{0}{\infty}{t^{s-1}e^{-t}\su{n}{1}{\infty}{\r{-1}^{n-1}ne^{-\r{n-1}t}}}\\
=&\lim_{s\searrow1}\pdv{s}\frac{1}{2^{s-2}}\su{n}{1}{\infty}{\frac{\r{-1}^{n-1}}{n^{s-1}}\i{t}{0}{\infty}{\r{nt}^{s-1}e^{-nt}n}}\\
=&\lim_{s\searrow1}\frac{1}{2^{s-2}}\su{n}{1}{\infty}{\frac{\r{-1}^{n-1}}{n^{s-1}}\i{t}{0}{\infty}{u^{s-1}e^{-u}}}\\
=&\lim_{s\searrow1}\pdv{s}\frac{\r{1-2^{2-s}}\zeta\r{s-1}\Gamma\r{s}}{2^{s-2}}\\
=&\lim_{s\searrow1}\frac{\r{1-2^{2-s}}\zeta\r{s-1}\Gamma\r{s}}{2^{s-2}}\r{\frac{2^{2-s}\ln2}{1-2^{2-s}}+\frac{\zeta^\prime\r{s-1}}{\zeta\r{s-1}}+\psi\r{s}-\ln2}\\
=&\frac{\r{1-2}\zeta\r{0}\Gamma\r{1}}{2^{-1}}\r{\frac{2\ln2}{1-2}+\frac{\zeta^\prime\r{0}}{\zeta\r{0}}+\psi\r{1}-\ln2}\\
=&-2\r{-\frac{1}{2}}\r{-2\ln2+\frac{-\frac{1}{2}\ln2\pi}{-\frac{1}{2}}-\gamma-\ln2}\\
=&\ln2\pi-3\ln2-\gamma\\
=&\ln\frac{\pi}{4}-\gamma
\end{align*}
なので,$\d\i{x}{0}{\infty}{\frac{\ln x}{\cosh^2x}}=\ln\frac{\pi}{4}-\gamma$です.$\blacksquare$