$$\newcommand{a}[1]{\left\langle#1\right\rangle}
\newcommand{arccot}[0]{\mathrm{arccot}}
\newcommand{arccsc}[0]{\mathrm{arccsc}}
\newcommand{arcosh}[0]{\mathrm{arcosh}}
\newcommand{arcoth}[0]{\mathrm{arcoth}}
\newcommand{arcsch}[0]{\mathrm{arcsch}}
\newcommand{arcsec}[0]{\mathrm{arcsec}}
\newcommand{arsech}[0]{\mathrm{arsech}}
\newcommand{arsinh}[0]{\mathrm{arsinh}}
\newcommand{artanh}[0]{\mathrm{artanh}}
\newcommand{c}[1]{\left\{#1\right\}}
\newcommand{C}[0]{\mathbb{C}}
\newcommand{ce}[1]{\left\lceil#1\right\rceil}
\newcommand{class}[3]{C^{#1}\r{#2;#3}}
\newcommand{csch}[0]{\mathrm{csch}}
\newcommand{d}[0]{\displaystyle}
\newcommand{D}[0]{\mathbb{D}}
\newcommand{dd}[0]{\mathrm{d}}
\newcommand{div}[0]{\mathrm{div}}
\newcommand{division}[0]{÷}
\newcommand{dv}[1]{\frac{\dd}{\dd#1}}
\newcommand{eq}[2]{\exists#1\ \mathrm{s.t.}\ #2}
\newcommand{f}[1]{\left\lfloor#1\right\rfloor}
\newcommand{grad}[0]{\mathrm{grad}\ }
\newcommand{half}[0]{\frac{1}{2}}
\newcommand{halfpi}[0]{\frac{\pi}{2}}
\newcommand{i}[4]{\int_{#2}^{#3}#4\mathrm{d}#1}
\newcommand{l}[3]{\lim_{#1\rightarrow#2}#3}
\newcommand{map}[2]{\mathrm{Map}\r{#1,#2}}
\newcommand{N}[0]{\mathbb{N}}
\newcommand{p}[4]{\prod_{#1=#2}^{#3}#4}
\newcommand{pdv}[1]{\frac{\partial}{\partial#1}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{r}[1]{\left(#1\right)}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{rot}[0]{\mathrm{rot}\ }
\newcommand{s}[1]{\left[#1\right]}
\newcommand{sdif}[2]{#1\backslash#2}
\newcommand{sech}[0]{\mathrm{sech}}
\newcommand{set}[2]{\c{#1:#2}}
\newcommand{sll}[2]{\left[#1,#2\right[}
\newcommand{slr}[2]{\left[#1,#2\right]}
\newcommand{srl}[2]{\left]#1,#2\right[}
\newcommand{srr}[2]{\left]#1,#2\right]}
\newcommand{su}[4]{\sum_{#1=#2}^{#3}#4}
\newcommand{uq}[2]{\forall#1,\ #2}
\newcommand{v}[1]{\left|#1\right|}
\newcommand{Z}[0]{\mathbb{Z}}
$$
@integralsbot
さんがツイートした
こちらの定理
の解説です.
以下の等式が成り立ちます.ただし$s\in\C$とし,$\Re s>2$を満たすとします.
$\d\i{x}{1}{\infty}{\frac{\c{x}^2}{x^{s+1}}}=\frac{1}{s-2}-\frac{\zeta\r{s}}{s}-\frac{2\zeta\r{s-1}}{s\r{s-1}}$
ツイート内容では$\mathfrak{R}s>1$となっていますが,この範囲全体では成り立ちません.より狭い範囲$\mathfrak{R}s>2$で成り立ちます.
ツイート内容では右辺が$\d\frac{1}{s-2}-\frac{\zeta\r{s}}{s}-\frac{2\zeta\r{s-1}}{s\r{s-2}}$となっていますが,$\d\frac{1}{s-2}-\frac{\zeta\r{s}}{s}-\frac{2\zeta\r{s-1}}{s\r{s-1}}$が正しいです.
解説
\begin{align*}
&\d\i{x}{1}{\infty}{\frac{\c{x}^2}{x^{s+1}}}\\
=&\l{R}{\infty}{\d\i{x}{1}{R}{\frac{\c{x}^2}{x^{s+1}}}}\\
=&\l{R}{\infty}{\r{\su{k}{2}{\f{R}+2}{\d\i{x}{k-1}{k}{\frac{\c{x}^2}{x^{s+1}}}}-\d\i{x}{R}{\f{R}+1}{\frac{\c{x}^2}{x^{s+1}}}-\d\i{x}{\f{R}+1}{\f{R}+2}{\frac{\c{x}^2}{x^{s+1}}}}}\\
=&\l{R}{\infty}{\r{\su{k}{2}{\f{R}+2}{\d\i{x}{k-1}{k}{\frac{\r{x-k+1}^2}{x^{s+1}}}}-\d\i{x}{R}{\f{R}+1}{\frac{\r{x-\f{R}}^2}{x^{s+1}}}-\d\i{x}{\f{R}+1}{\f{R}+2}{\frac{\r{x-\f{R}-1}^2}{x^{s+1}}}}}\\
=&\l{R}{\infty}{\r{\su{k}{2}{\f{R}+2}{\d\i{x}{k-1}{k}{\r{x^{1-s}-2\r{k-1}x^{-s}+\r{k-1}^2x^{-1-s}}}}-\d\i{x}{R}{\f{R}+1}{\r{x^{1-s}-2\f{R}x^{-s}+\f{R}^2x^{-1-s}}}-\d\i{x}{\f{R}+1}{\f{R}+2}{\r{x^{1-s}-2\r{\f{R}+1}x^{-s}+\r{\f{R}+1}^2x^{-1-s}}}}}\\
=&\l{R}{\infty}{\r{\su{k}{2}{\f{R}+2}{\s{\frac{x^{2-s}}{2-s}-2\r{k-1}\frac{x^{1-s}}{1-s}+\r{k-1}^2\frac{x^{-s}}{-s}}_{x=k-1}^k}-\s{\frac{x^{2-s}}{2-s}-2\f{R}\frac{x^{1-s}}{1-s}+\f{R}^2\frac{x^{-s}}{-s}}_{x=R}^{\f{R}+1}-\s{\frac{x^{2-s}}{2-s}-2\r{\f{R}+1}\frac{x^{1-s}}{1-s}+\r{\f{R}+1}^2\frac{x^{-s}}{-s}}_{x=\f{R}+1}^{\f{R}+2}}}\\
=&\l{R}{\infty}{\r{\su{k}{2}{\f{R}+2}{\r{\frac{1}{s-2}\r{\frac{1}{\r{k-1}^{s-2}}-\frac{1}{k^{s-2}}}-\frac{1}{s}\r{\frac{1}{\r{k-1}^{s-2}}-\frac{1}{k^{s-2}}}-\frac{1}{s}\frac{1}{k^s}-\frac{2}{s\r{s-1}}\r{\frac{1}{\r{k-1}^{s-2}}-\frac{1}{k^{s-2}}}-\frac{2}{s\r{s-1}}\frac{1}{k^{s-1}}}}-\r{\frac{\r{\f{R}+1}^{2-s}}{2-s}-2\r{\f{R}+1}\frac{\r{\f{R}+1}^{1-s}}{1-s}+\r{\f{R}+1}^2\frac{\r{\f{R}+1}^{-s}}{-s}-\frac{1}{s}\frac{1}{\r{\f{R}+1}^s}-\frac{2}{s\r{s-1}}\frac{1}{\r{\f{R}+1}^{s-1}}+\frac{1}{\r{s-2}R^{s-2}}-\frac{2\f{R}}{\r{s-1}R^{s-1}}+\frac{\f{R}^2}{sR^s}}-\r{-\frac{1}{s-2}\frac{1}{\r{\f{R}+2}^{s-2}}+\frac{1}{s}\frac{1}{\r{\f{R}+2}^{s-2}}-\frac{1}{s}\frac{1}{\r{\f{R}+2}^s}+\frac{2}{s\r{s-1}}\frac{1}{\r{\f{R}+2}^{s-2}}-\frac{2}{s\r{s-1}}\frac{1}{\r{\f{R}+2}^{s-1}}-\frac{\r{\f{R}+1}^{2-s}}{2-s}+2\r{\f{R}+1}\frac{\r{\f{R}+1}^{1-s}}{1-s}-\r{\f{R}+1}^2\frac{\r{\f{R}+1}^{-s}}{-s}}}}\\
=&\l{R}{\infty}{\r{\frac{1}{s-2}\r{1-\frac{1}{\r{\f{R}+2}^{s-2}}}-\frac{1}{s}\r{1-\frac{1}{\r{\f{R}+2}^{s-2}}}-\frac{1}{s}\r{H_{\f{R}+2,s}-1}-\frac{2}{s\r{s-1}}\r{1-\frac{1}{\r{\f{R}+2}^{s-2}}}-\frac{2}{s\r{s-1}}\r{H_{\f{R}+2,s-1}-1}-\r{-\frac{1}{s-2}\frac{1}{\r{\f{R}+2}^{s-2}}+\frac{1}{s}\frac{1}{\r{\f{R}+2}^{s-2}}-\frac{1}{s}\frac{1}{\r{\f{R}+2}^s}+\frac{2}{s\r{s-1}}\frac{1}{\r{\f{R}+2}^{s-2}}-\frac{2}{s\r{s-1}}\frac{1}{\r{\f{R}+2}^{s-1}}-\frac{1}{s}\frac{1}{\r{\f{R}+1}^s}-\frac{2}{s\r{s-1}}\frac{1}{\r{\f{R}+1}^{s-1}}+\frac{1}{\r{s-2}R^{s-2}}-\frac{2\f{R}}{\r{s-1}R^{s-1}}+\frac{\f{R}^2}{sR^s}}}}\\
=&\l{R}{\infty}{\r{\frac{1}{s-2}-\frac{H_{\f{R},s}}{s}-\frac{2H_{\f{R},s-1}}{s\r{s-1}}-\frac{1}{\r{s-2}R^{s-2}}+\frac{2\f{R}}{\r{s-1}R^{s-1}}-\frac{\f{R}^2}{sR^s}}}\\
=&\l{R}{\infty}{\r{\frac{1}{s-2}-\frac{H_{\f{R},s}}{s}-\frac{2H_{\f{R},s-1}}{s\r{s-1}}-\frac{1}{s-2}\frac{1}{R^{s-2}}+2\frac{\f{R}}{R}\frac{1}{s-1}\frac{1}{R^{s-2}}-\r{\frac{\f{R}}{R}}^2\frac{1}{s}\frac{1}{R^{s-2}}}}\\
=&\frac{1}{s-2}-\frac{\zeta\r{s}}{s}-\frac{2\zeta\r{s-1}}{s\r{s-1}}-\frac{1}{s-2}\cdot0+2\cdot1\frac{1}{s-1}\cdot0-1^2\frac{1}{s}\cdot0\\
=&\frac{1}{s-2}-\frac{\zeta\r{s}}{s}-\frac{2\zeta\r{s-1}}{s\r{s-1}}
\end{align*}
なので,$\d\i{x}{1}{\infty}{\frac{\c{x}^2}{x^{s+1}}}=\frac{1}{s-2}-\frac{\zeta\r{s}}{s}-\frac{2\zeta\r{s-1}}{s\r{s-1}}$です.$\blacksquare$