$$\newcommand{a}[1]{\left\langle#1\right\rangle}
\newcommand{arccot}[0]{\mathrm{arccot}}
\newcommand{arccsc}[0]{\mathrm{arccsc}}
\newcommand{arcosh}[0]{\mathrm{arcosh}}
\newcommand{arcoth}[0]{\mathrm{arcoth}}
\newcommand{arcsch}[0]{\mathrm{arcsch}}
\newcommand{arcsec}[0]{\mathrm{arcsec}}
\newcommand{arsech}[0]{\mathrm{arsech}}
\newcommand{arsinh}[0]{\mathrm{arsinh}}
\newcommand{artanh}[0]{\mathrm{artanh}}
\newcommand{c}[1]{\left\{#1\right\}}
\newcommand{C}[0]{\mathbb{C}}
\newcommand{ce}[1]{\left\lceil#1\right\rceil}
\newcommand{class}[3]{C^{#1}\r{#2;#3}}
\newcommand{csch}[0]{\mathrm{csch}}
\newcommand{d}[0]{\displaystyle}
\newcommand{D}[0]{\mathbb{D}}
\newcommand{dd}[0]{\mathrm{d}}
\newcommand{div}[0]{\mathrm{div}}
\newcommand{division}[0]{÷}
\newcommand{dv}[1]{\frac{\dd}{\dd#1}}
\newcommand{eq}[2]{\exists#1\ \mathrm{s.t.}\ #2}
\newcommand{f}[1]{\left\lfloor#1\right\rfloor}
\newcommand{grad}[0]{\mathrm{grad}\ }
\newcommand{half}[0]{\frac{1}{2}}
\newcommand{halfpi}[0]{\frac{\pi}{2}}
\newcommand{i}[4]{\int_{#2}^{#3}#4\mathrm{d}#1}
\newcommand{l}[3]{\lim_{#1\rightarrow#2}#3}
\newcommand{map}[2]{\mathrm{Map}\r{#1,#2}}
\newcommand{N}[0]{\mathbb{N}}
\newcommand{p}[4]{\prod_{#1=#2}^{#3}#4}
\newcommand{pdv}[1]{\frac{\partial}{\partial#1}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{r}[1]{\left(#1\right)}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{rot}[0]{\mathrm{rot}\ }
\newcommand{s}[1]{\left[#1\right]}
\newcommand{sdif}[2]{#1\backslash#2}
\newcommand{sech}[0]{\mathrm{sech}}
\newcommand{set}[2]{\c{#1:#2}}
\newcommand{sll}[2]{\left[#1,#2\right[}
\newcommand{slr}[2]{\left[#1,#2\right]}
\newcommand{srl}[2]{\left]#1,#2\right[}
\newcommand{srr}[2]{\left]#1,#2\right]}
\newcommand{su}[4]{\sum_{#1=#2}^{#3}#4}
\newcommand{uq}[2]{\forall#1,\ #2}
\newcommand{v}[1]{\left|#1\right|}
\newcommand{Z}[0]{\mathbb{Z}}
$$
@integralsbot
さんがツイートした
こちらの定理
の解説です.
以下の等式が成り立ちます.ただし$n\in\Z_{\geq 0}$,$a\in\C$とし,$\Re a>1$を満たすとします.
$\d\i{x}{0}{1}{\frac{x^n\ln^{a-1}\frac{1}{x}}{1-x}}=\Gamma\r{a}\r{\zeta\r{a}-H_{n,a}}$
解説
\begin{align*}
&\i{x}{0}{1}{\frac{x^n\ln^{a-1}\frac{1}{x}}{1-x}}\\
=&\i{x}{0}{1}{\r{x^n\ln^{a-1}\frac{1}{x}}\su{k}{0}{\infty}{x^k}}\\
=&\i{x}{0}{1}{\r{-\su{k}{0}{\infty}{\frac{1}{\r{n+1+k}^a}\r{\r{n+1+k}\ln\frac{1}{x}}^{a-1}e^{-\r{n+1+k}\ln\frac{1}{x}}\r{n+1+k}\r{-\frac{1}{x}}}}}\\
=&\s{\su{k}{0}{\infty}{\frac{\Gamma\r{a,\r{n+1+k}\ln\frac{1}{x}}}{\r{n+1+k}^a}}}_{x=0}^1\\
=&\su{k}{0}{\infty}{\frac{\Gamma\r{a}}{\r{n+1+k}^a}}\\
=&\Gamma\r{a}\su{k}{n+1}{\infty}{\frac{1}{k^a}}\\
=&\Gamma\r{a}\r{\zeta\r{a}-H_{n,a}}
\end{align*}
なので,$\d\i{x}{0}{1}{\frac{x^n\ln^{a-1}\frac{1}{x}}{1-x}}=\Gamma\r{a}\r{\zeta\r{a}-H_{n,a}}$です.$\blacksquare$
余談ですが,$n$を$\Re q>0$を満たす$q\in\C$に拡張すると,フルヴィッツのゼータ関数を使って$\d\i{x}{0}{1}{\frac{x^q\ln^{a-1}\frac{1}{x}}{1-x}}=\Gamma\r{a}\zeta\r{a,q+1}$となります.