$$\newcommand{a}[1]{\left\langle#1\right\rangle}
\newcommand{arccot}[0]{\mathrm{arccot}}
\newcommand{arccsc}[0]{\mathrm{arccsc}}
\newcommand{arcosh}[0]{\mathrm{arcosh}}
\newcommand{arcoth}[0]{\mathrm{arcoth}}
\newcommand{arcsch}[0]{\mathrm{arcsch}}
\newcommand{arcsec}[0]{\mathrm{arcsec}}
\newcommand{arsech}[0]{\mathrm{arsech}}
\newcommand{arsinh}[0]{\mathrm{arsinh}}
\newcommand{artanh}[0]{\mathrm{artanh}}
\newcommand{c}[1]{\left\{#1\right\}}
\newcommand{C}[0]{\mathbb{C}}
\newcommand{ce}[1]{\left\lceil#1\right\rceil}
\newcommand{class}[3]{C^{#1}\r{#2;#3}}
\newcommand{csch}[0]{\mathrm{csch}}
\newcommand{d}[0]{\displaystyle}
\newcommand{D}[0]{\mathbb{D}}
\newcommand{dd}[0]{\mathrm{d}}
\newcommand{div}[0]{\mathrm{div}}
\newcommand{division}[0]{÷}
\newcommand{dv}[1]{\frac{\dd}{\dd#1}}
\newcommand{eq}[2]{\exists#1\ \mathrm{s.t.}\ #2}
\newcommand{f}[1]{\left\lfloor#1\right\rfloor}
\newcommand{grad}[0]{\mathrm{grad}\ }
\newcommand{half}[0]{\frac{1}{2}}
\newcommand{halfpi}[0]{\frac{\pi}{2}}
\newcommand{i}[4]{\int_{#2}^{#3}#4\mathrm{d}#1}
\newcommand{l}[3]{\lim_{#1\rightarrow#2}#3}
\newcommand{map}[2]{\mathrm{Map}\r{#1,#2}}
\newcommand{N}[0]{\mathbb{N}}
\newcommand{p}[4]{\prod_{#1=#2}^{#3}#4}
\newcommand{pdv}[1]{\frac{\partial}{\partial#1}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{r}[1]{\left(#1\right)}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{rot}[0]{\mathrm{rot}\ }
\newcommand{s}[1]{\left[#1\right]}
\newcommand{sdif}[2]{#1\backslash#2}
\newcommand{sech}[0]{\mathrm{sech}}
\newcommand{set}[2]{\c{#1:#2}}
\newcommand{sll}[2]{\left[#1,#2\right[}
\newcommand{slr}[2]{\left[#1,#2\right]}
\newcommand{srl}[2]{\left]#1,#2\right[}
\newcommand{srr}[2]{\left]#1,#2\right]}
\newcommand{su}[4]{\sum_{#1=#2}^{#3}#4}
\newcommand{uq}[2]{\forall#1,\ #2}
\newcommand{v}[1]{\left|#1\right|}
\newcommand{Z}[0]{\mathbb{Z}}
$$
@integralsbot
さんがツイートした
こちらの定理
の解説です.
以下$2$つの等式が成り立ちます.ただし$\alpha\in\R$,$\beta\in\R$とし,$-\pi<\alpha<\pi$を満たすとします.
- $\d\i{x}{-\infty}{\infty}{\frac{\sinh\alpha x}{\sinh\pi x}\cos\beta x}=\frac{\sin\alpha}{\cos\alpha+\cosh\beta}$
- $\d\i{x}{-\infty}{\infty}{\frac{\cosh\alpha x}{\sinh\pi x}\sin\beta x}=\frac{\sinh\beta}{\cos\alpha+\cosh\beta}$
解説
\begin{align*}
&\i{x}{0}{\infty}{\frac{\sinh\r{\alpha+i\beta}x}{\sinh\pi x}}\\
=&\i{x}{0}{\infty}{\frac{\frac{e^{\r{\alpha+i\beta}x}-e^{-\r{\alpha+i\beta}x}}{2}}{\frac{e^{\pi x}-e^{-\pi x}}{2}}}\\
=&\i{x}{0}{\infty}{\frac{e^{\r{\alpha-\pi+i\beta}x}-e^{\r{-\alpha-\pi-i\beta}x}}{1-e^{-2\pi x}}}\\
=&\i{x}{0}{\infty}{\r{e^{\r{\alpha-\pi+i\beta}x}-e^{\r{-\alpha-\pi-i\beta}x}}\su{n}{0}{\infty}{e^{-2\pi nx}}}\\
=&\i{x}{0}{\infty}{\su{n}{0}{\infty}{\r{e^{\r{\alpha-\r{2n+1}\pi+i\beta}x}-e^{\r{-\alpha-\r{2n+1}\pi-i\beta}x}}}}\\
=&\s{\su{n}{0}{\infty}{\r{\frac{e^{\r{\alpha-\r{2n+1}\pi+i\beta}x}}{\alpha-\r{2n+1}\pi+i\beta}-\frac{e^{\r{-\alpha-\r{2n+1}\pi-i\beta}x}}{-\alpha-\r{2n+1}\pi-i\beta}}}}_{x=0}^\infty\\
=&-\su{n}{0}{\infty}{\r{\frac{1}{\alpha+i\beta-\r{2n+1}\pi}+\frac{1}{\alpha+i\beta+\r{2n+1}\pi}}}\\
=&-\su{n}{0}{\infty}{\frac{2\r{\alpha+i\beta}}{\r{\alpha+i\beta}^2-\r{\r{2n+1}\pi}^2}}\\
=&\frac{1}{2\pi}\r{-\su{n}{0}{\infty}{\frac{2\r{\frac{\alpha+i\beta}{2\pi}}}{\r{\frac{\alpha+i\beta}{2\pi}}^2-\r{n+\half}^2}}}\\
=&\frac{1}{2\pi}\pi\tan\pi\frac{\alpha+i\beta}{2\pi}\\
=&\half\tan\frac{\alpha+i\beta}{2}\\
=&\half\frac{2\sin\frac{\alpha+i\beta}{2}\cos\frac{\alpha-i\beta}{2}}{2\cos\frac{\alpha+i\beta}{2}\cos\frac{\alpha-i\beta}{2}}\\
=&\half\frac{\sin\alpha+\sin i\beta}{\cos\alpha+\cos i\beta}\\
=&\half\frac{\sin\alpha+i\sinh\beta}{\cos\alpha+\cosh\beta}
\end{align*}
より,
\begin{align*}
&\i{x}{-\infty}{\infty}{\frac{\sinh\alpha x}{\sinh\pi x}\cos\beta x}\\
=&\Re\i{x}{-\infty}{\infty}{\frac{\sinh\alpha x\cos\beta x+i\cosh\alpha x\sin\beta x}{\sinh\pi x}}\\
=&\Re\i{x}{-\infty}{\infty}{\frac{\sinh\alpha x\cosh i\beta x+\cosh\alpha x\sinh i\beta x}{\sinh\pi x}}\\
=&\Re\i{x}{-\infty}{\infty}{\frac{\sinh\r{\alpha+i\beta}x}{\sinh\pi x}}\\
=&\Re2\i{x}{0}{\infty}{\frac{\sinh\r{\alpha+i\beta}x}{\sinh\pi x}}\\
=&\Re2\half\frac{\sin\alpha+i\sinh\beta}{\cos\alpha+\cosh\beta}\\
=&\frac{\sin\alpha}{\cos\alpha+\cosh\beta}
\end{align*}
及び
\begin{align*}
&\i{x}{-\infty}{\infty}{\frac{\cosh\alpha x}{\sinh\pi x}\sin\beta x}\\
=&\Im\i{x}{-\infty}{\infty}{\frac{\sinh\alpha x\cos\beta x+i\cosh\alpha x\sin\beta x}{\sinh\pi x}}\\
=&\Im\i{x}{-\infty}{\infty}{\frac{\sinh\alpha x\cosh i\beta x+\cosh\alpha x\sinh i\beta x}{\sinh\pi x}}\\
=&\Im\i{x}{-\infty}{\infty}{\frac{\sinh\r{\alpha+i\beta}x}{\sinh\pi x}}\\
=&\Im2\i{x}{0}{\infty}{\frac{\sinh\r{\alpha+i\beta}x}{\sinh\pi x}}\\
=&\Im2\half\frac{\sin\alpha+i\sinh\beta}{\cos\alpha+\cosh\beta}\\
=&\frac{\sinh\beta}{\cos\alpha+\cosh\beta}
\end{align*}
なので,$\d\i{x}{-\infty}{\infty}{\frac{\sinh\alpha x}{\sinh\pi x}\cos\beta x}=\frac{\sin\alpha}{\cos\alpha+\cosh\beta}$及び$\d\i{x}{-\infty}{\infty}{\frac{\cosh\alpha x}{\sinh\pi x}\sin\beta x}=\frac{\sinh\beta}{\cos\alpha+\cosh\beta}$です.$\blacksquare$