$$\newcommand{a}[1]{\left\langle#1\right\rangle}
\newcommand{arccot}[0]{\mathrm{arccot}}
\newcommand{arccsc}[0]{\mathrm{arccsc}}
\newcommand{arcosh}[0]{\mathrm{arcosh}}
\newcommand{arcoth}[0]{\mathrm{arcoth}}
\newcommand{arcsch}[0]{\mathrm{arcsch}}
\newcommand{arcsec}[0]{\mathrm{arcsec}}
\newcommand{arsech}[0]{\mathrm{arsech}}
\newcommand{arsinh}[0]{\mathrm{arsinh}}
\newcommand{artanh}[0]{\mathrm{artanh}}
\newcommand{c}[1]{\left\{#1\right\}}
\newcommand{C}[0]{\mathbb{C}}
\newcommand{ce}[1]{\left\lceil#1\right\rceil}
\newcommand{class}[3]{C^{#1}\r{#2;#3}}
\newcommand{csch}[0]{\mathrm{csch}}
\newcommand{d}[0]{\displaystyle}
\newcommand{D}[0]{\mathbb{D}}
\newcommand{dd}[0]{\mathrm{d}}
\newcommand{div}[0]{\mathrm{div}}
\newcommand{division}[0]{÷}
\newcommand{dv}[1]{\frac{\dd}{\dd#1}}
\newcommand{eq}[1]{\exists#1\ \mathrm{s.t.}\ }
\newcommand{f}[1]{\left\lfloor#1\right\rfloor}
\newcommand{grad}[0]{\mathrm{grad}\ }
\newcommand{half}[0]{\frac{1}{2}}
\newcommand{halfpi}[0]{\frac{\pi}{2}}
\newcommand{map}[2]{\mathrm{Map}\r{#1,#2}}
\newcommand{N}[0]{\mathbb{N}}
\newcommand{p}[4]{\prod_{#1=#2}^{#3}#4}
\newcommand{pdv}[1]{\frac{\partial}{\partial#1}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{r}[1]{\left(#1\right)}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{rot}[0]{\mathrm{rot}\ }
\newcommand{s}[1]{\left[#1\right]}
\newcommand{sdif}[2]{#1\backslash#2}
\newcommand{sech}[0]{\mathrm{sech}}
\newcommand{set}[2]{\c{#1:#2}}
\newcommand{sll}[2]{\left[#1,#2\right[}
\newcommand{slr}[2]{\left[#1,#2\right]}
\newcommand{srl}[2]{\left]#1,#2\right[}
\newcommand{srr}[2]{\left]#1,#2\right]}
\newcommand{uq}[1]{\forall#1,\ }
\newcommand{v}[1]{\left|#1\right|}
\newcommand{Z}[0]{\mathbb{Z}}
$$
@integralsbot
さんがツイートした
こちらの定理
の解説です.
以下の等式が成り立ちます.
$\displaystyle\int_0^\infty\frac{1+2\cos x+x\sin x}{1+2x\sin x+x^2}\dd x=\frac{\pi}{1+\Omega}$
まず補題を証明します.
以下の等式が成り立ちます.ただし$\lim\limits_{R\rightarrow\infty}$は$R$が$\R_{>1}$上を動くものとします.
$\displaystyle\lim_{R\rightarrow\infty}\int_{\halfpi}^{\frac{3\pi}{2}}\frac{2+e^{Re^{i\theta}}}{Re^{i\theta}+e^{Re^{i\theta}}}iRe^{i\theta}\dd\theta=2\pi i$
解説
$1$超過の実数$R$に対して,
\begin{align*}
&\v{\int_{\halfpi}^{\frac{3\pi}{2}}\frac{2+e^{Re^{i\theta}}}{Re^{i\theta}+e^{Re^{i\theta}}}iRe^{i\theta}\dd\theta-2\pi i}\\
=&\v{\int_{\halfpi}^{\frac{3\pi}{2}}\r{\frac{2+e^{Re^{i\theta}}}{Re^{i\theta}+e^{Re^{i\theta}}}iRe^{i\theta}-2i}\dd\theta}\\
=&\v{\int_{\halfpi}^{\frac{3\pi}{2}}\frac{\r{Re^{i\theta}-2}ie^{Re^{i\theta}}}{Re^{i\theta}+e^{Re^{i\theta}}}\dd\theta}\\
=&\v{\int_{\halfpi}^{\frac{3\pi}{2}}\frac{\r{R-2e^{-i\theta}}ie^{Re^{i\theta}}}{R+e^{Re^{i\theta}-i\theta}}\dd\theta}\\
=&\v{\int_{\halfpi}^{\frac{3\pi}{2}}\frac{\r{R-2e^{-i\theta}}e^{R\cos\theta}ie^{iR\sin\theta}}{R+e^{R\cos\theta}e^{iR\sin\theta-i\theta}}\dd\theta}\\
\leq&\int_{\halfpi}^{\frac{3\pi}{2}}\v{\frac{\r{R-2e^{-i\theta}}e^{R\cos\theta}ie^{iR\sin\theta}}{R+e^{R\cos\theta}e^{iR\sin\theta-i\theta}}}\dd\theta\\
=&\int_{\halfpi}^{\frac{3\pi}{2}}\frac{\v{R-2e^{-i\theta}}e^{R\cos\theta}}{\v{R+e^{R\cos\theta}e^{iR\sin\theta-i\theta}}}\dd\theta\\
\leq&\int_{\halfpi}^{\frac{3\pi}{2}}\frac{\r{R+2}e^{R\cos\theta}}{R-e^{R\cos\theta}}\dd\theta\\
\leq&\int_{\halfpi}^{\frac{3\pi}{2}}\frac{\r{R+2}e^{R\cos\theta}}{R-e^{R\cdot0}}\dd\theta\\
=&\frac{1+\frac{2}{R}}{1-\frac{1}{R}}\int_{\halfpi}^{\frac{3\pi}{2}}e^{R\cos\theta}\dd\theta\\
=&\frac{1+\frac{2}{R}}{1-\frac{1}{R}}\r{\int_{\halfpi}^{\pi}e^{R\cos\theta}\dd\theta+\int_{\pi}^{\frac{3\pi}{2}}e^{R\cos\theta}\dd\theta}\\
\leq&\frac{1+\frac{2}{R}}{1-\frac{1}{R}}\r{\int_{\halfpi}^{\pi}e^{-R\frac{2}{\pi}\r{\theta-\halfpi}}\dd\theta+\int_{\pi}^{\frac{3\pi}{2}}e^{R\frac{2}{\pi}\r{\theta-\frac{3\pi}{2}}}\dd\theta}\\
=&\frac{1+\frac{2}{R}}{1-\frac{1}{R}}\r{\s{-\frac{\pi}{2R}e^{-R\frac{2}{\pi}\r{\theta-\halfpi}}}_{\theta=\halfpi}^{\pi}+\s{\frac{\pi}{2R}e^{R\frac{2}{\pi}\r{\theta-\frac{3\pi}{2}}}}_{\theta=\pi}^{\frac{3\pi}{2}}}\\
=&\frac{1+\frac{2}{R}}{1-\frac{1}{R}}\r{-\frac{\pi}{2R}\r{e^{-R}-1}+\frac{\pi}{2R}\r{1-e^{-R}}}\\
=&\frac{1+\frac{2}{R}}{1-\frac{1}{R}}\frac{\pi}{R}\r{1-e^{-R}}
\end{align*}
であり,$\d\lim_{R\rightarrow\infty}\frac{1+\frac{2}{R}}{1-\frac{1}{R}}\frac{\pi}{R}\r{1-e^{-R}}=\frac{1+0}{1-0}\cdot0\cdot\r{1-0}=0$なので,$\displaystyle\lim_{R\rightarrow\infty}\int_{\halfpi}^{\frac{3\pi}{2}}\frac{2+e^{Re^{i\theta}}}{Re^{i\theta}+e^{Re^{i\theta}}}iRe^{i\theta}\dd\theta=2\pi i$です.$\blacksquare$
以下の論理式が成り立ちます.
$\d\uq{z\in\C}\r{\Re z\leq0\rightarrow\r{z+e^z=0\leftrightarrow z=-\Omega}}$
解説
$\Re z\leq0$なる複素数$z$を任意にとります.
$z+e^z=0$と仮定します.
$\v{\Im z}\leq\v{z}=\v{-e^z}=e^{\Re z}\leq1$なので,$\v{\Im z}\leq1$です.
\begin{align*}
&z+e^z=0\\
\implies&\Re z+i\Im z+e^{\Re z+i\Im z}=0\\
\implies&\Re z+i\Im z+e^{\Re z}\r{\cos\Im z+i\sin\Im z}=0\\
\implies&\Re z+e^{\Re z}\cos\Im z=0\land\Im z+e^{\Re z}\sin\Im z=0\\
\end{align*}
であり,ここで$\Im z\neq0$と仮定すると$\v{\Im z}\leq1$に注意すれば$\sin\Im z\neq0$なので,$\Im z+e^{\Re z}\sin\Im z=0$より$\d e^{\Re z}=-\frac{\Im z}{\sin\Im z}$です.よって$\Re z+e^{\Re z}\cos\Im z=0$より$\d\Re z=\frac{\Im z}{\tan\Im z}$ですが,$\v{\Im z}\leq1$に注意すれば$\d\frac{\Im z}{\tan\Im z}>0$より$\d\Re z>0$となり,$\d\Re z\leq0$に矛盾します.
よって$\Im z=0$です.
\begin{align*}
&z+e^z=0\\
\implies&\Re z+e^{\Re z}=0\\
\implies&-\Re ze^{-\Re z}=1\\
\implies&-\Re z=\Omega\\
\implies&\Re z=-\Omega\\
\end{align*}
で,$\Im z=0$と併せて$z=-\Omega$を得ます.
逆に,$z=-\Omega$と仮定すると$z+e^z=-\Omega+e^{-\Omega}=-\Omega+\Omega=0$です.
以上より,$\d\uq{z\in\C}\r{\Re z\leq0\rightarrow\r{z+e^z=0\leftrightarrow z=-\Omega}}$です.$\blacksquare$
では,定理の証明に移ります.
解説
\begin{align*}
&\int_0^\infty\frac{1+2\cos x+x\sin x}{1+2x\sin x+x^2}\dd x\\
=&\frac{1}{2i}\int_0^\infty\r{\frac{2i+2ie^{ix}+2ie^{-ix}+xe^{ix}-xe^{-ix}}{1-ix\r{e^{ix}-e^{-ix}}+x^2}}\dd x\\
=&\frac{1}{2i}\int_0^\infty\r{\frac{\r{2+e^{ix}}\r{x+ie^{-ix}}+\r{-2-e^{-ix}}\r{x-ie^{ix}}}{\r{x-ie^{ix}}\r{x+ie^{-ix}}}}\dd x\\
=&\frac{1}{2i}\int_0^\infty\r{\frac{2+e^{ix}}{x-ie^{ix}}+\frac{-2-e^{-ix}}{x+ie^{-ix}}}\dd x\\
=&\frac{1}{2i}\lim_{R\rightarrow\infty}\int_0^R\r{\frac{2+e^{ix}}{x-ie^{ix}}+\frac{-2-e^{-ix}}{x+ie^{-ix}}}\dd x\\
=&\frac{1}{2i}\lim_{R\rightarrow\infty}\r{\int_0^R\frac{2+e^{ix}}{ix+e^{ix}}i\dd x+\int_R^0\frac{2+e^{-ix}}{-ix+e^{-ix}}\r{-i\dd x}}\\
=&\frac{1}{2i}\lim_{R\rightarrow\infty}\int_{-iR}^{iR}\frac{2+e^z}{z+e^z}\dd z\\
=&\frac{1}{2i}\lim_{R\rightarrow\infty}\r{2\pi i\mathrm{Res}_{z=-\Omega}\r{\frac{2+e^z}{z+e^z}}-\int_{\halfpi}^{\frac{3\pi}{2}}\frac{2+e^{Re^{i\theta}}}{Re^{i\theta}+e^{Re^{i\theta}}}iRe^{i\theta}\dd\theta}\\
=&\frac{1}{2i}\r{2\pi i\lim_{z\rightarrow-\Omega}\r{z+\Omega}\frac{2+e^z}{z+e^z}-2\pi i}\\
=&\pi\r{\lim_{z\rightarrow-\Omega}\r{z+\Omega}\frac{2+e^z}{z+\Omega+e^{z+\Omega-\Omega}-\Omega}-1}\\
=&\pi\r{\lim_{z\rightarrow-\Omega}\r{z+\Omega}\frac{2+e^z}{z+\Omega+\Omega e^{z+\Omega}-\Omega}-1}\\
=&\pi\r{\lim_{z\rightarrow-\Omega}\frac{2+e^z}{1+\Omega\frac{e^{z+\Omega}-1}{z+\Omega}}-1}\\
=&\pi\r{\frac{2+e^{-\Omega}}{1+\Omega\cdot1}-1}\\
=&\pi\r{\frac{2+\Omega}{1+\Omega}-1}\\
=&\frac{\pi}{1+\Omega}
\end{align*}
なので,$\displaystyle\int_0^\infty\frac{1+2\cos x+x\sin x}{1+2x\sin x+x^2}\dd x=\frac{\pi}{1+\Omega}$です.$\blacksquare$