3

解説18

96
0
$$\newcommand{a}[1]{\left\langle#1\right\rangle} \newcommand{arccot}[0]{\mathrm{arccot}} \newcommand{arccsc}[0]{\mathrm{arccsc}} \newcommand{arcosh}[0]{\mathrm{arcosh}} \newcommand{arcoth}[0]{\mathrm{arcoth}} \newcommand{arcsch}[0]{\mathrm{arcsch}} \newcommand{arcsec}[0]{\mathrm{arcsec}} \newcommand{arsech}[0]{\mathrm{arsech}} \newcommand{arsinh}[0]{\mathrm{arsinh}} \newcommand{artanh}[0]{\mathrm{artanh}} \newcommand{c}[1]{\left\{#1\right\}} \newcommand{C}[0]{\mathbb{C}} \newcommand{ce}[1]{\left\lceil#1\right\rceil} \newcommand{class}[3]{C^{#1}\r{#2;#3}} \newcommand{csch}[0]{\mathrm{csch}} \newcommand{d}[0]{\displaystyle} \newcommand{D}[0]{\mathbb{D}} \newcommand{dd}[0]{\mathrm{d}} \newcommand{div}[0]{\mathrm{div}} \newcommand{division}[0]{÷} \newcommand{dv}[1]{\frac{\dd}{\dd#1}} \newcommand{eq}[1]{\exists#1\ \mathrm{s.t.}\ } \newcommand{f}[1]{\left\lfloor#1\right\rfloor} \newcommand{grad}[0]{\mathrm{grad}\ } \newcommand{half}[0]{\frac{1}{2}} \newcommand{halfpi}[0]{\frac{\pi}{2}} \newcommand{map}[2]{\mathrm{Map}\r{#1,#2}} \newcommand{N}[0]{\mathbb{N}} \newcommand{p}[4]{\prod_{#1=#2}^{#3}#4} \newcommand{pdv}[1]{\frac{\partial}{\partial#1}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{r}[1]{\left(#1\right)} \newcommand{R}[0]{\mathbb{R}} \newcommand{rot}[0]{\mathrm{rot}\ } \newcommand{s}[1]{\left[#1\right]} \newcommand{sdif}[2]{#1\backslash#2} \newcommand{sech}[0]{\mathrm{sech}} \newcommand{set}[2]{\c{#1:#2}} \newcommand{sll}[2]{\left[#1,#2\right[} \newcommand{slr}[2]{\left[#1,#2\right]} \newcommand{srl}[2]{\left]#1,#2\right[} \newcommand{srr}[2]{\left]#1,#2\right]} \newcommand{uq}[1]{\forall#1,\ } \newcommand{v}[1]{\left|#1\right|} \newcommand{Z}[0]{\mathbb{Z}} $$

@sounansya_29 さんがツイートした こちらの問題 の解説です.

以下の式を求めてください.
$\displaystyle\int_0^1\frac{\artanh\sqrt{1-x^2}}{1-x}\dd x$

解答
解説
\begin{align*} &\int_0^1\frac{\artanh\sqrt{1-x^2}}{1-x}\dd x\\ =&\int_0^1\frac{\arsech x}{1-x}\dd x\\ =&\int_0^1\frac{1}{1-x}\r{-\arsech1+\arsech x}\dd x\\ =&\int_0^1\frac{1}{1-x}\r{-\r{\ln\frac{2}{1}-\sum_{n=1}^\infty\r{\frac{\r{2n}!}{2^{2n}\r{n!}^2}}\frac{1^{2n}}{2n}}+\r{\ln\frac{2}{x}-\sum_{n=1}^\infty\r{\frac{\r{2n}!}{2^{2n}\r{n!}^2}}\frac{x^{2n}}{2n}}}\dd x\\ =&\int_0^1\frac{1}{1-x}\r{-\r{\ln\frac{2}{1}-\lim_{b\rightarrow0}\frac{1}{2b}\sum_{n=1}^\infty\frac{\r{\half}_n\r{b}_n}{\r{1}_n}\frac{1}{n!}}+\r{\ln\frac{2}{x}-\lim_{b\rightarrow0}\frac{1}{2b}\sum_{n=1}^\infty\frac{\r{\half}_n\r{b}_n}{\r{1}_n}\frac{x^{2n}}{n!}}}\dd x\\ =&\int_0^1\lim_{b\rightarrow0}\frac{1}{2b}\sum_{n=0}^\infty\frac{\r{\half}_n\r{b}_n}{\r{1}_n}\frac{1}{n!}\frac{x^0-x^{2n}}{1-x}\dd x-\int_0^1\frac{\ln x}{1-x}\dd x\\ =&\lim_{b\rightarrow0}\frac{1}{2b}\sum_{n=0}^\infty\frac{\r{\half}_n\r{b}_n}{\r{1}_n}\frac{1}{n!}\r{\psi\r{2n+1}-\psi\r{1}}-\int_0^1\ln x\sum_{k=1}^\infty x^{k-1}\dd x\\ =&\lim_{b\rightarrow0}\frac{1}{2b}\sum_{n=0}^\infty\frac{\r{\half}_n\r{b}_n}{\r{1}_n}\frac{1}{n!}\r{\ln2+\half\r{\psi\r{n+\half}+\psi\r{n+1}}-\psi\r{1}}+\int_0^1\sum_{k=1}^\infty\frac{1}{k^2}\r{-\frac{k}{x}}\r{-\r{k\ln\frac{1}{x}}^{2-1}e^{-k\ln\frac{1}{x}}}\dd x\\ =&\lim_{b\rightarrow0}\frac{1}{4b}\sum_{n=0}^\infty\frac{\r{\half}_n\r{b}_n}{\r{1}_n}\frac{1}{n!}\r{\frac{1}{\Gamma\r{\half}\r{\half}_n}\lim_{a\rightarrow\half}\pdv{a}\Gamma\r{n+a}-\Gamma\r{1}\r{1}_n\lim_{c\rightarrow1}\pdv{c}\frac{1}{\Gamma\r{n+c}}+2\r{\ln2-\psi\r{1}}}+\s{\sum_{k=1}^\infty\frac{1}{k^2}\Gamma\r{2,k\ln\frac{1}{x}}}_{x=0}^1\\ =&\lim_{b\rightarrow0}\frac{1}{4b}\r{\lim_{a\rightarrow\half}\pdv{a}\frac{\Gamma\r{a}}{\Gamma\r{\half}}\sum_{n=0}^\infty\frac{\r{a}_n\r{b}_n}{\r{1}_n}\frac{1}{n!}-\lim_{c\rightarrow1}\pdv{c}\frac{\Gamma\r{1}}{\Gamma\r{c}}\sum_{n=0}^\infty\frac{\r{\half}_n\r{b}_n}{\r{c}_n}\frac{1}{n!}+2\r{\ln2-\psi\r{1}}\sum_{n=0}^\infty\frac{\r{\half}_n\r{b}_n}{\r{1}_n}\frac{1}{n!}}+\sum_{k=1}^\infty\frac{1}{k^2}\Gamma\r{2}\\ =&\lim_{b\rightarrow0}\frac{1}{4b}\r{\lim_{a\rightarrow\half}\pdv{a}\frac{\Gamma\r{a}}{\Gamma\r{\half}}\frac{\Gamma\r{1}\Gamma\r{1-a-b}}{\Gamma\r{1-a}\Gamma\r{1-b}}-\lim_{c\rightarrow1}\pdv{c}\frac{\Gamma\r{1}}{\Gamma\r{c}}\frac{\Gamma\r{c}\Gamma\r{c-\half-b}}{\Gamma\r{c-\half}\Gamma\r{c-b}}+\r{2\ln2+2\gamma}\frac{\Gamma\r{1}\Gamma\r{1-\half-b}}{\Gamma\r{1-\half}\Gamma\r{1-b}}}+\zeta\r{2}\Gamma\r{2}\\ =&\lim_{b\rightarrow0}\frac{1}{4b}\r{\frac{\Gamma\r{\half}}{\Gamma\r{\half}}\frac{\Gamma\r{1}\Gamma\r{1-\half-b}}{\Gamma\r{1-\half}\Gamma\r{1-b}}\r{\psi\r{\half}-\psi\r{1-\half-b}+\psi\r{1-\half}}-\frac{\Gamma\r{1}\Gamma\r{1-\half-b}}{\Gamma\r{1-\half}\Gamma\r{1-b}}\r{\psi\r{1-\half-b}-\psi\r{1-\half}-\psi\r{1-b}}+\frac{\Gamma\r{1}\Gamma\r{1-\half-b}}{\Gamma\r{1-\half}\Gamma\r{1-b}}\r{-\psi\r{\half}-\psi\r{1}}}+\frac{\pi^2}{6}\cdot1!\\ =&\lim_{b\rightarrow0}\frac{\Gamma\r{1}\Gamma\r{1-\half-b}}{4\Gamma\r{1-\half}\Gamma\r{1-b}}\r{2\frac{\psi\r{\half-b}-\psi\r{\half}}{-b}-\frac{\psi\r{1-b}-\psi\r{1}}{-b}}+\frac{\pi^2}{6}\\ =&\frac{\Gamma\r{1}\Gamma\r{1-\half-0}}{4\Gamma\r{1-\half}\Gamma\r{1-0}}\r{2\psi^\r{1}\r{\half}-\psi^\r{1}\r{1}}+\frac{\pi^2}{6}\\ =&\frac{\Gamma\r{1}\Gamma\r{\half}}{4\Gamma\r{\half}\Gamma\r{1}}\r{2\frac{\pi^2}{2}-\frac{\pi^2}{6}}+\frac{\pi^2}{6}\\ =&\frac{5\pi^2}{24}+\frac{\pi^2}{6}\\ =&\frac{3\pi^2}{8} \end{align*}
なので,$\displaystyle\int_0^1\frac{\artanh\sqrt{1-x^2}}{1-x}\dd x=\frac{3\pi^2}{8}$です.
投稿日:2021615

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

微分積分学,数理論理学,順序数解析が好きです.ここでは主に微積や級数の話題をすると思います.記事まとめは下のリンクからどうぞ.

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中